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1 INTRODUCTION
In current era, mobile applications (apps) have become an im-
port part of our daily lives, which has significantly changed
our lifestyles. However, developers tend to add more and
more functionalities in the app, while most of them are used
infrequently. Those unused code may take up the memory
space of the device and affect the performance while user
are using the apps. Moreover, the unused code poses a secu-
rity risk, as it can be exploited for code re-use attacks, e.g.,
Return Oriented Programming (ROP) attacks. What’s worse
is that if the unused code contains malicious code and they
could be exploited by adversaries even if users do not use
them, . To address these issues, we propose an approach for
dynamically blocking a list of target methods while running
Android apps.

2 BACKGROUND
Android Runtime (ART). Android runtime is a new mecha-

nism introduced in Android 4.4, and it became the default
runtime environment since Android 5.0, which uses ahead-
of-time (AOT) compilation that compiles all the DEX code
into native instructions during the app installation. Start-
ing from Android 7.0 until now (Android 13), ART uses a
hybrid combination of AOT, just-in-time (JIT), and profile-
guided compilation. Based on this mechanism, an app is
initially installed without AOT compilation, but a new file
called OAT file (in an extended ELF format) is generated
with only its Dalvik bytecode (also called DEX code). Every
time a method is invoked, the ART sends the method’s DEX
code to an interpreter, which interprets the DEX code into
ARM instructions and executes them. When a method is
frequently invoked, it will be JIT compiled into native code
and stored in a code cache, and the method will be added to a
profile. When the device is idle and charging, a compilation
daemon AOT-compiles those frequently used code to native
instructions based on the generated profile, and inserts it

into the OAT file. Generally, each app has its own runtime
instance, which is established while launching the app and
preserves all the running configuration and status of the app.
Both the app and their ART are running in the same process
with the same Linux user ID (uid). Since the permissions are
granted based on the uid, the runtime instance shares the
same permissions as its corresponding app.

Native library loading. Android allows applications to in-
corporate native libraries, which are mostly so libraries, and
use JNI to invoke native methods from the Java side. Since
Android 6.0, the Android system supports loading uncom-
pressed so libraries from the APK file. The app can load a
specific so library from the APK by using the API System.
loadLibrary(), after which they can invoke the nativemethod
within the library. The so library is an extended ELF format
file, which contains several headers and their corresponding
sections. When loading the so library, the Android system
first reads the headers to locate the start and end of the con-
tents to be loaded in the memory and allocates ample enough
space in the memory, after which it starts to load the actual
content into the memory by mapping different sections in
the file into different segments in the memory through a
system call mmap().

3 PROPOSED APPROACH
3.1 Assumption
The primary purpose of our framework is two-fold: first, it
aims to intersect the execution of specific methods, and sec-
ond, it defends against code reuse attacks such as potential
Return-Oriented Programming (ROP) attacks. Remarkably,
this functionality is achieved without static modifications
to the APK file. This report assumes that the schema, which
comprises a list of methods to be removed, has already been
obtained. This schema can be generated using existing static
debloating tools [17, 22], provided by anti-virus engines or
defined manually by the user. Users have the flexibility to
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modify this schema through a management application. Our
framework is integrated into a customized and unrooted An-
droid OS on the user’s device, instrumenting the Android
runtime (ART) [3], Android framework [2] and Bionic mod-
ule [4]., while leaving the kernel unmodified. Users can use
the phone independently, i.e., without connecting to the
computer. During installation, applications do not utilize
a profile to indicate which parts should be AOT-compiled.
Consequently, all DEX methods remain uncompiled during
installation. Only native code (i.e., ARM instructions on An-
droid devices) can be used as the ROP gadgets. Apps may
attempt to detect our framework through side channels and
potentially evade blocking by force-stopping their apps.

3.2 Overview
The overall workflow of our framework is illustrated in Fig-
ure 1. The process can be divided into three parts: sharing
blocking schema, blocking DEX methods, and blocking na-
tive library methods. Firstly, to conduct method-blocking,
our framework needs a list of methods to be blocked, i.e., the
blocking schema. The schema is managed by a management
app and shared with other apps and their Android runtime
environment (see 1 in Figure 1) through ContentProvider, a
data sharing mechanism. Meanwhile, to successfully obtain
the blocking schema, we must grant read permission to every
third-party app. The details of the first part are elaborated in
§ 3.3. Then, each time an app is launched, the instrumented
ART reads the schema via the ContentProvider, after which
our framework can block methods during the running of
the application. The blocked methods include DEX methods
and native library methods. To block the DEX methods, Our
framework utilizes the hybrid compilation mechanism of
the Android system (see 2 in Figure 1). It intercepts the
method invocation and prevents it from being passed to the
interpreter. Additionally, our framework freezes the method
counter of target methods to prevent these methods from
being JIT/AOT-compiled after they are frequently invoked.
Details are described in § ??. For methods in native libraries,
our framework blocks them by instrumenting the process
of both library loading and method invocation (see 3 in
Figure 1). While loading the native library, our framework
locates the offset of the target method in the library and cal-
culates its actual memory address, after which it zero-fills the
target space in memory to prevent loading blocked methods
into the memory. Then, when the blocked method is invoked,
the entry point of that method will be linked to the start ad-
dress of an empty memory space. Details are described in
§ 3.5. Moreover, to provide a user-friendly interface for the
DEX and native method blocking, our framework provides a
graceful termination when a blocked method is invoked. The

instrumented ART will start an Activity of the management
app to display necessary information.

3.3 Sharing blocking Schema
Before dynamically blocking target methods, we must estab-
lish an inter-procedural communication channel between
our management app and the Android runtime. This chan-
nel will facilitate sharing the blocking schema, allowing the
runtime to identify which methods should undergo blocking.
It is worth noting that the Android runtime is implemented
in C/C++, providing the execution environment for Android
apps primarily written in Java/Kotlin. Therefore, we need a
cross-language approach to share the schema successfully.
However, we cannot store this file within the app’s public
data folder, as doing so would require other apps to request
READ_EXTERNAL_STORAGE permission to read the schema,
since the runtime shares the same permissions as the app.
In the current state of research, many approaches rely on a
configuration file to exchange information between the app
and ART (Android Runtime). For instance, 𝐹𝐴3 [15] utilizes a
configuration file placed in a publicly accessible folder such
as /data/local/tmp. This allows runtime instances to ac-
cess and read the configuration file during the app launch.
However, a significant drawback of this method is that mali-
cious apps could potentially manipulate the file, removing
their methods from the blocking schema. As a result, their
malicious functions could continue to operate unaffected
during the blocking process.

To address the vulnerability of malicious apps modifying
the blocking schema, we propose a new communication
channel that ensures only the management app can modify
the schema. In contrast, all other apps can only read it. We
achieve this by leveraging Android’s ContentProvider [5]
and Java Native Interface (JNI) [6].

Here is how our approach works:
• Management App Setup: The management app cre-
ates a dedicated database to store the blocking schema.
Additionally, it establishes a ContentProvider that of-
fers interfaces to manage access to the database. Users
can then use the management app to configure the
blocking schema.

• Read-Only Permission: The management app defines
read permission for the ContentProvider, which per-
mits other apps and their runtime environment to read
the content in the database but restricts them from
making modifications.

• Sharing Schema with ART: When an app is launched,
our framework employs JNI to invoke the read in-
terface of the ContentProvider from ART (written in
C/C++), allowing it to load the blocking schema into
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Figure 1: The overall workflow.

the runtime instance. This process completes the schema
sharing from the app to the ART.

• Context Wait: Since the interfaces of the Content-
Provider require the context of the app, we need to
wait until the app’s context is created after its launch
before proceeding with schema sharing.

• Permission Grant Modification: To simplify the pro-
cess for third-party apps and avoid requiring them
to explicitly declare the read permission for our Con-
tentProvider in their manifest files, we modify the
permission grant process of the Android frameworks.
We automatically insert the read permission into the
requested permission list of every third-party app. Im-
portantly, this permission is categorized as normal
permission, and the system can automatically grant it
after the app installation.

• Blocking Schema Update: The process is straightfor-
wardwhen users decide tomodify the blocking schema.
They simply need tomake the necessary changes through
the management app and restart the target application.
Upon restarting the target application, the ART auto-
matically loads the updated blocking schema via the
ContentProvider.

By implementing this communication channel, we balance
enabling legitimate apps to access the blocking schema and
preventingmalicious apps frommaking unauthorized changes.

It is crucial to note that our approach does not involve
any static modification to the APK file. Instead, we dynami-
cally insert the permission after installing the app. Since the
inserted permission is a read-only permission and the con-
tent within the database is entirely under the management
app’s control, there are no potential risks to user security
and privacy. This design ensures that only the management
app maintains full authority over the blocking schema, mini-
mizing any potential harm from unauthorized modification.

3.4 Blocking DEX Code Methods
It is important to note that the DEX code in apps cannot
be directly executed; instead, it needs to be passed to the
interpreter for further compilation. In the Android Runtime
(ART), each method within an app corresponds to an Art-
Method object, which preserves essential information such
as the method name, code address in the DEX code, entry
point, and method counters. When a method is invoked,
ART checks if the method has been loaded before. If not, it
loads the method from the app’s DEX code and sets the entry
point to a stub called art_quick_to_interpreter_bridge.
This stub checks the DEX code and passes it to the inter-
preter, which interprets the code into native instructions for
execution. Additionally, each method maintains a method
counter that records the number of times the method has
been invoked. If the counter exceeds a threshold, the method
is JIT-compiled or AOT-compiled into native instructions,
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and the method’s entry point is changed accordingly. Re-
garding DEX method blocking, we focus not on removing
the DEX code from the app entirely but rather on preventing
it from being compiled into native code. We need to address
two critical problems: 1) interception of DEX Methods: We
must intercept the DEX methods that are being interpreted
into native code and execute only those that do not belong to
the blocking schema. For methods in the schema, we prevent
their invocation and return null, making it appear as if the
method body is empty; 2) Prevention of JIT/AOT Compila-
tion: To achieve DEX code blocking, we must ensure that the
DEX code is not JIT-compiled or AOT-compiled into native
code.

Specifically, wemodify the interpreter to check if a method
belongs to the blocking schema before it is interpreted into
native code. If so, it intercepts the method invocation and
returns null as if the method body is empty. Meanwhile, our
framework resets the method counter of the target method
in its ArtMethod object so that it will not trigger the JIT/AOT
complication. For methods outside the schema, their DEX
code is interpreted and executed as usual. Furthermore, to
provide a graceful termination and inform the user that the
system has blocked the method rather than encountering
an app execution error, our framework utilizes JNI to start
an Activity of the management app. This Activity then dis-
plays the necessary information to the user. By implementing
these modifications, our framework effectively achieves DEX
method blocking by selectively intercepting method invo-
cations and preventing the compilation of DEX code into
native instructions, thereby conducting DEX method block-
ing while ensuring user awareness of the blocking process.

3.5 Blocking Native Library Functions
In addition to DEX code, app developers widely use native li-
braries for their ability to make system calls. However, these
libraries are also susceptible to facilitating malicious behav-
iors, as highlighted in prior research [9, 19, 21]. Unlike DEX
methods, native library methods can be directly executed,
rendering the previously mentioned blocking approach inap-
plicable. More than simply intercepting method invocations
is required. As long as the native methods are loaded into
memory, they can be exploited as gadgets for code reuse at-
tacks. Therefore, the focus should be on preventing loading
native methods listed in the blocking schema into memory.
In other words, we need to selectively load the methods, ex-
cluding those specified in the schema. However, this presents
two non-trivial challenges. Firstly, when loading the shared
object library (so library), the lazy linking mechanism delays
linking ArtMethod objects to their corresponding method
code in the loaded memory until the method is called. Since
our blocking schema relies on method descriptions, typically

their names, the first challenge is to locate the offset of target
methods in the so library based on their method names. Sec-
ondly, the system call mmap() necessitates the starting offset
loaded in the file to be an integer multiple of the memory
page size. Consequently, it is impossible to load each method
individually unless we modify the kernel and alter the sys-
tem call implementation, as multiple native methods may
exist within the same memory page. How to selectively load
the native methods without kernel modification is another
challenge.

To overcome these challenges, our framework employs a
strategic approach that involves linking the names of blocked
methods with their method code by reading extra head-
ers and removing the blocked method code from memory
through zero-filling. Specifically, during the process of read-
ing the section headers of the so library, our framework
reads and stores two additional headers called dynsym and
dynstr from the so file, which are not initially loaded un-
til the ArtMethod linking process takes place. The dynsym
serves as a symbol table, preserving the starting offset, size,
and an index for identifying each native method. On the
other hand, the dynstr contains a list of all symbol names
in the library. By utilizing the index from dynsym, our frame-
work can determine the actual method name in the dynstr,
thereby obtaining the starting and ending offset of the target
methods in the so file. The address of the target methods in
the memory can be calculated by combining the page and
method offsets.
Having obtained the necessary information, our frame-

work addresses the second challenge while mapping library
sections into memory segments. It checks if the mapped
content contains the target method code, accomplished by
comparing the mapped offset of the content with the address
of the target methods. If a match is found, our framework
employs a specific procedure to ensure selective loading
and protection of native methods. our framework performs
zero-filling on the mapped memory space of each target
method based on the obtained address and size. After that,
our framework insert an eight-byte native code which con-
tains instructions to return null as if the function body is
empty. This step is to make the app running more robust,
otherwise the app will directly crash if there are no such
return instructions. By implementing these techniques, our
framework addresses the challenges of selectively loading
and protecting native methods without kernel modifications.
Last but not least, similar to blocking DEX methods, our

framework also provides a graceful termination while block-
ing native functions. Specifically, ART uses function Shared-
Library::FindSymbol() to find the address of the native
method going to be invoked. After zero-filling the method,
the address of the target methods is retained. Consequently,
when the SharedLibrary::FindSymbol() function is called,
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it links the target method to the zero-filled memory space.
This step prevents the native code of these blocked methods
from being executed or utilized as payloads of code reuse at-
tacks. Our frameworkmodifies this SharedLibrary::FindS-
ymbol() function to launch an Activity of the management
app via JNI. This activity displays the necessary information
to the user, providing transparency and insights into the
blocking process.

4 RELATEDWORK
Debloating Android applications. With the performance
improvement of Android devices, developers commonly add
rich functionalities to their Android applications to cater
to different user needs. However, some of these features
may be irrelevant or unnecessary for certain users. Installing
and running such applications can impact system perfor-
mance and security. Google has recognized this issue and
provided solutions from the developers’ perspective. For
example, Google provides a static analysis tool, i.e., R8, to
detect and remove unused code and resources from apps [7].
Google also allows developers to use App Bundle so that
only the code and resources needed for a specific device or
feature are downloaded [1].
In academics, researchers also developed a series of ap-

proaches to debloat Android applications from various per-
spectives. For example, Jiang et al. remove dead code of
Android applications based on static analysis [13]. Pilgun
et al. debloated apps by removing the code not executed
during the test [17]. Tang et al. debloated apps at the gran-
ularity of Activity, Permission, and Modularity [22]. Xie et
al. debloated apps to minimize the bandwidth of mobile net-
works [24]. Unlike previous works, our approach differs in
the following aspects: (1) we perform runtime application
debloating, rather than debloating at the installation stage
targeting tampering the apk file, (2) we are capable of de-
bloating native libraries in Android applications, not limited
to just dex files.
Debloating binary programs. In general, static binary

analysis is an undecidable problem [23]. Researchers pro-
posed a series of approaches to identify the code to debloat
based on static binary analysis. For example, Agadakos et
al. removed the unused code by taking advantage of debug
symbols to identify function boundaries, construct library
function call graphs, and detect address-taken functions that
could be targeted by indirect calls [8]. Landsborough et al.
employed a genetic algorithm that in toy programs disabled
features in binaries [14]. Qian et al. use training and heuris-
tics to identify unnecessary basic blocks and remove them
from the binary [18]. Ghaffarinia and Hamlen used a similar
approach based on training to limit control flow transfers to
unauthorized sections of the code [11].

Recently, researchers focus on removing the unused code
in shared libraries across platforms. For example, Mulliner
et al. removed unused code in Windows shared libraries
(i.e., DLLs) [16]. To build CFGs, they used bounded address
tracking to resolve function pointers. Zhang et al. debloated
the static library on firmware’s shared libraries by erasing the
basic blocks not included in the inter-procedural control flow
graph (ICFG). They analyzed the global offset table’s address
loading patterns and decided on all legitimate addresses that
could be referenced to build a whole the ICFG [25].

Other works explore the potential of debloating software
based on predefined feature sets. For example, TRIMMER
finds unnecessary basic blocks using an inter-procedural
analysis based on user-defined configurations [20]. CHISEL
debloated the program given a highlevel specification from
the user [12]. The specification identifies wanted and un-
wanted program input/output pairs, and requires the source
code and the compilation toolchain. To accelerate program
reduction, Chisel uses reinforcement learning. It repeats a
trial and error approach to make a more precise Markov
Decision Process corresponding to the specification.

DamGate is themost relatedwork to our paper [10]. DamGate
rewrites binaries with gates to prevent execution of unused
features. Different from their work, our work do not modify
the binary file itself, instead, we conduct a selectively load-
ing of the native methods during the loading process of the
library.

5 CONCLUSION
In this report, we present a novel approach to dynamically
block the execution of certain methods within Android ap-
plications. We share the list of blocked methods between the
Android runtime and the management app by leveraging An-
droid’s data-sharing mechanism. We can block both the DEX
code compilation and the native code loading. Moreover, we
design a graceful termination to improve users’ experience
while the blocked methods are invoked. Our modification
on the AOSP 13 does not violate its default SELinux policy,
and thus, it reduces the risk of importing additional secu-
rity issues. It has a variety of usage scenarios, like blocking
unused features by users or blocking malicious methods.
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