
Self-Admitted Technical Debts Identification:
How Far Are We?

Hao Gu∗, Shichao Zhang∗, Qiao Huang†, Zhifang Liao∗, Jiakun Liu‡, David Lo‡
∗Central South University, Changsha, China

†Zhejiang Gongshang University, Hangzhou, China
‡Singapore Management University, Singapore, Singapore
{harry.gu, zfliao}@csu.edu.cn, 3043644408@qq.com,

qiaohuang@zjgsu.edu.cn, {jkliu, davidlo}@smu.edu.sg

Abstract—Self-admitted technical debt (SATD) is a kind of
technical debt that is already acknowledged by the developers and
needs additional work or resources to address in the future. In
recent years, though many methods have been proposed to detect
SATDs, these methods have mainly focused on Java-type code
comments published by Maldonado et al. It is unclear whether
these methods trained on Maldonado’s code comments dataset
can find SATD in other programming languages or other software
artifacts, such as issue trackers, pull requests, and commit
messages effectively. In order to answer the above confusion and
investigate how far our community has progressed in the field
of SATD identification, we first collect a comprehensive dataset
that contains SATDs in code comments from four different pro-
gramming languages (java, python, docker file, XML) and SATDs
in other different artifacts (issue tracker, pull requests, commit
messages) from previous papers working in the field of SATD.
Then, we re-train the existing models with Maldonado’s code
comments dataset and test all the models on other programming
languages and other artifacts. The results show that existing
SATD identification methods can find SATDs in other non-Java
languages, but perform poorly in identifying SATDs from three
other different artifacts. In addition, in order to simultaneously
identify four different artifacts of SATDs, we develop a Multi-
Task Learning model utilizing BERT for SATD identification
(MT-BERT-SATD). Considering four different artifacts and the
SATD identification tasks, MT-BERT-SATD achieves an average
F1-score of 0.712 (0.625-0.859), which is superior to existing
models from 4.6% to 30.4%. Results show that MT-BERT-
SATD can effectively identify SATD instances across explored
programming languages and software artifacts, indicating its
capability to identify SATD instances in new and unexplored
programming languages and software artifacts.

Index Terms—multi-task learning, Self-Admitted Technical
Debt, MT-BERT-SATD

I. INTRODUCTION

Technical debt (TD) refers to various technical compro-

mises made during software development, which result in

additional work or costs in the future, thereby reducing the

productivity and code quality of the development team [1]–[5].

TD admitted by developers is referred to as Self-Admitted

Technical Debt (SATD). SATD poses significant challenges

to software maintenance, as the introduction of these debts

requires developers to spend more time and resources in

Hao Gu and Shichao Zhang are both first authors and contributed
equally to this work. Zhifang Liao and Jiakun Liu are both corresponding
authors.

repaying them in the later stages [2], [6]–[8]. Wehaibi et al.

[3] found that the existence of SATD not only increases the

probability of software defects but also hinders future changes

to software systems. Therefore, identifying and resolving

SATD in a timely manner is critical to ensuring high software

quality and maintainability.

In the past, our community has proposed many approaches

[6], [9]–[13] to automatically detect SATD in Java code

comments [9]. However, prior studies [14]–[19] showed that

the SATD can commonly exist across programming languages

and software artifacts. SATD across different artifacts can be

closely related (e.g., developers discuss SATD present in the

source code through issue trackers). If we cannot identify

the SATD in other artifacts, we cannot manage SATD as

a whole. When developers remove the SATD comments in

the source code but neglect the corresponding discussion of

the SATD in other software artifacts, e.g., issues, there can

be obsolete SATD in other artifacts. This imposes additional

effort in the management of SATD. What’s more, the SATD in

different programming languages and different artifacts have

different characteristics. For example, prior studies show the

presence of a set of priori knowledge within SATD comments,

such as the use of markers like “TODO” or “FIXME” [11].

However, SATD from other artifacts may lack similar priori

knowledge (e.g., SATD in commit message may not marked

with “FIXME”), and existing SATD detection tools focus

on the SATD comments in the source code and overlook

the SATD in other artifacts. This indicates that the existing

approaches trained on Java projects dataset may fail. This

requires researchers to identify these SATD comments from

different artifacts manually when investigating new software

artifacts.

Motivated by the above-mentioned examples, we would like

to investigate the progress made by our community in the

field of SATD identification and explore effective ways of

simultaneously identifying SATD from various artifacts. We

collect and make publicly available a comprehensive dataset

of SATD from the datasets with manually labeled data pro-

posed in previous SATD-related studies [9], [11], [14]–[21].

The previous datasets were focused on individual languages

or artifacts, without simultaneous consideration consideration

of other languages or artifacts. The comprehensive dataset

804

2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/24/$31.00 ©2024 IEEE
DOI 10.1109/SANER60148.2024.00087

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

An
al

ys
is,

 E
vo

lu
tio

n
an

d
Re

en
gi

ne
er

in
g

(S
AN

ER
) |

 9
79

-8
-3

50
3-

30
66

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SA

N
ER

60
14

8.
20

24
.0

00
87

contains over 9K positive SATD samples from four different

languages in code comments, namely Java, Python, Dockerfile,

and XML. Furthermore, the dataset also contains over 6K

positive SATD samples from three other kinds of artifacts,

namely, issue reports, pull requests, and commit messages.

Our study aims to answer the following research questions:

RQ1: Can existing SATD detection models identify SATDs
across programming languages effectively?

We re-train the existing model using the corrected Maldon-

ado dataset [22] and test these trained models and unsuper-

vised approaches on non-Java code comments to verify their

generality across programming languages. Our experiment

demonstrates that existing SATD identification methods can

effectively recognize SATD across programming languages

(F1-scores range from 0.870 to 0.925 except pattern-based

approach by relying entirely on keywords for matching).

RQ2: Can existing SATD detection models identify SATDs
across software artifacts effectively?

Followed by RQ1, we evaluate these well-trained models

and unsupervised learning methods on non-code comment

datasets to investigate their efficacy in identifying SATD

from artifacts beyond code comments, i.e. issue trackers, pull

requests, and commit messages. Our results suggest that the

existing SATD identification approaches exhibit poor perfor-

mance in identifying SATD from other artifacts (F1-scores

range from 0.023 to 0.324), highlighting the need for further

research to improve SATD identification.

RQ3: Can we build a model to accurately identify SATDs
across software artifacts?

Due to the varying characteristics of SATD across differ-

ent artifacts [18], existing SATD identification methods have

limited capacity to learn distinctive features of SATD from

different artifacts using a single model architecture. In more

detail, existing unsupervised learning methods, such as Pattern

[6] and MAT [11], only capture features from code comments,

neglecting SATD features from non-code comments. Existing

supervised learning models, such as NLP [9], TM [10], and

BERT [13], rely on a single input source and cannot distin-

guish between the different artifacts of SATD features.

To this end, we propose a multi-task learning model based

on BERT, namely MT-BERT-SATD. MT-BERT-SATD employs

multitask learning technique to concurrently learn the SATD

features targeted at different artifacts, thereby enhancing the

SATD identification performance across different artifacts. For

identifying SATDs across different software artifacts (such as

issue, PR, commit, and code comments), MT-BERT-SATD can

learn the different features from them and share parameters

when training models to achieve a better generalization than

other single-task learning methods. Our findings demonstrate

that our approach performs better than existing SATD iden-

tification methods in identifying SATDs from four distinct

artifacts simultaneously. Additionally, our approach is more

effective in dealing with small sample data and identifying

SATD in new software artifacts than other models, demon-

strating its good generalization ability.

The main contributions of this work are as follows:

• We collected and summarized the literature on SATD, espe-

cially covering studies that (1) characterize SATD in different

software artifacts and (2) automate SATD detection.

• We empirically demonstrate the generalizability of existing

SATD identification models across programming languages

and artifacts.

• We design and develop a model, MT-BERT-SATD, which

can effectively identify SATD from different artifacts with a

good generalization ability.

Table I
SATD Samples from four different artifacts.

Issue Trackers “This method is not specific to TaskTracker, i.e., it
should work fine with LocalRunner too, right? So
there ought to be a better place to put it.” From
[hadoop-issue-1251]

Pull Requests “Is this the implementation class? If so can we use
‘class’ instead of type to be more explicit?” From
[incubator-heron-pull-1820]

Commit Messages “Removing unused dependency and changing de-
fault daemon port to 9090. Fixes #300”
From [attic-apex-malhar-commit-01b162]

Code Comments “// TODO: This method doesn’t appear to be used.”
From [jmeter-code-comment]

Fig. 1. An example of the four existence cycles of SATD.

II. SATD ACROSS PROGRAMMING LANGUAGES AND

SOFTWARE ARTIFACTS

To understand the progress in the field of (1) empirical

studies characterizing SATD in different software artifacts and

(2) automated SATD detection methods, we conducted 2 liter-

ature reviews on the papers which contain the keyword “self-

admitted technical debt” and are published from 2014 when

the concept of SATD was first introduced until 2022. Besides,

the 60 analyzed papers are mainly accepted by international

first-class conferences (ESEC/FSE, ICSE, ASE, etc.) and first-

class journals (TSE, TOSEM, etc.) in the direction of software

engineering-system, software-programming language, as well

as other important conferences and journals such as EMSE,

MSR, ICSME, etc.

A. Related Work and Motivating Examples

Prior studies showed that both OSS developers and indus-

trial developers can admit SATD in source code comments

(in Java [6], build scripts [14], [16], and python [8]), commit

messages [23], [24], code reviews or pull requests [19], and

issue trackers [19], [25], [26]. Table I shows examples of

805

SATDs from these four different artifacts. When developers

find or repay SATDs in some projects, they may record

the finding or repayment information of SATDs in commit

messages [18], [27], [28]. Also, developers may report urgent

SATDs in issue trackers [29]–[31]. Apart from that, SATDs

from issue trackers and code comments may be discussed

in reviewing related PRs [19]. That is, SATD exists in all

four artifacts, and its discovery and repayment process may

continue throughout the entire cycle of SATD’s existence.

Fig. 1 shows an example of a SATD instance across different

software artifacts in Camel1. An OSS developer introduced

a “FIXME” code debt in the code comments. Afterward,

this SATD was discovered and recorded in the issue, and

then the developer submitted a pull request to solve this

SATD, which was reviewed by the manager. Finally, the repair

information was recorded in the commit. This motivates us

to move towards centrally managing SATD instances in the

project as a whole. For example, when developers find SATD

in one artifact, they can find more details of SATD in other

artifacts so they can have a clear understanding of the entire

SATD existence process and thus repay SATD with higher

quality. In contrast, if only one artifact of SATD is singularly

identified, such as source code comments, then the developer

only understands part of the SATD introduction phase, but

neglects the existing corresponding discussion (i.e., ignores

the collective intelligence contributed by other developers).

Moreover, without identifying SATDs across software arti-

facts, when developers repay the SATD in source code but

without updating the status of the corresponding SATD issue

discussion, there can be obsolete SATD instances in issue

discussions. Future developers may fix the already repaired

SATD instances, which wastes the effort of other developers.

B. Dataset collection

To investigate whether the existing models can detect SATD

instances across programming languages and software arti-

facts, we collect a comprehensive dataset from previous papers

studying SATDs. To ensure the reliability and authenticity of

the dataset, each sub-dataset of this dataset has the following

characteristics: (1) The dataset is publicly available. (2) The

dataset was manually classified by the authors. (3) The manual

classification process of this dataset is rigorous and reliable

by following the majority rule or unifying decisions through

meetings. Among the papers that are selected in our literature

review, 10 papers meet the above criteria. We obtain their

publicly available datasets through the links provided by the

authors. Due to the code comments dataset published by Mal-

donado et al. (i.e., Dataset-06-Comments-Java in Table II) was

corrected by Yu et al. [22] and this corrected dataset is widely

used [22], [32], [33]. In this paper, Dataset-06-Comments-Java

is the corrected dataset. Besides, the comprehensive dataset

we proposed consists of SATDs and non-SATDs from four

different artifacts, namely, code comments, issue trackers, pull

requests, and commit messages. Among them, the code com-

1https://github.com/apache/camel

ment part of the dataset also contains SATDs and non-SATDs

extracted from four different languages, namely Dockerfile,

Python, XML, and Java. Table II shows the details of our

dataset.

III. AUTOMATIC IDENTIFICATION OF SATD

To understand the progress in the field of automatic SATD

detection, similar to Section II, we collected 15 articles about

the automatic identification of SATD.

A. Related Work and Selected Models

Numerous studies in recent years have been devoted to the

automatic identification of SATD, with a predominant focus

on SATD identification within code comments. The three

main techniques utilized for the identification of SATD are

unsupervised learning methods [6], [11], supervised learning

methods [9], [10], [13], [16], [34], and semi-supervised learn-

ing methods [22], [32]. We investigate 15 articles related to

SATD detection methods and select 5 representative models

with available source code [11], [13]. The five models are as

follows: Pattern [6], NLP (Natural Language Processing)
[9], TM (Text Mining) [10], MAT (Matches task Anno-
tation Tags) [11], and BERT (Bidirectional Encoder Rep-
resentations from Transformers) [13]. Where Pattern and

MAT are unsupervised methods, while NLP, TM, and BERT

are supervised methods. The following is a brief introduction

to each method:

• Pattern [6] is an unsupervised SATD identification method

based on pattern matching, which includes 62 frequent key-

words (e.g., “yuck”) or phrases (e.g., “cause for issue”)

commonly found in SATD comments.

• NLP [9] is an automated approach to identify SATD us-

ing natural language processing, namely, maximum entropy

classifier [35]. During training, the model aims to maximize

the conditional likelihood of the classes by taking into account

feature dependencies and calculating the corresponding feature

weights.

• TM [10] used text-mining techniques to identify SATDs

in code comments. Selecting useful features by Information

Gain (IG) technique [36]. IG is used to evaluate the amount

of information needed to predict whether a comment contains

SATD, based on the presence or absence of a particular feature.

Finally, using a sub-classifier voting technique to identify

SATDs in the target project.

• MAT [11] is a simple heuristic method, which Matches

task Annotation Tags (MAT), to automatically identify SATD.

Including four SATD tags: “TODO”, “FIXME”, “HACK”, and

“XXX”.

• BERT [13] is a modern machine-learning technique to

identify SATDs in code comments using BERT. It contains

a pre-train and fine-tune process. Especially, a pre-trained

model, namely, BERT-SO-1M, achieved the best performance.

In the subsequent comparative study, we used BERT-SO-

1M as the original paper’s representative pre-trained model.

BERT’s strong performance is attributed to its pre-training as

a bidirectional language model, which allows it to learn a vast

806

Table II
Comprehensive dataset containing four different programming languages and four different artifacts

Dataset Sample Source Description Published Year Article Source #Samples #SATD Reference

Dataset-06-Comments-Java Code Comments/java Code comments in 10 different types of Java projects. 2017 TSE 62275 4497 [9]
Dataset-03-Comments-XML Code Comments/XML Code comments in maven build systems. 2021 TSE 884 513 [16]
Dataset-05-Comments-Java Code Comments/java Code comments in 10 different types of Java projects. 2021 TOSEM 81260 2995 [11]
Dataset-01-Comments-Dockerfile Code Comments/dockerfile Code comments from files in Docker. 2022 EMSE 382 50 [14]
Dataset-02-Comments-Python Code Comments/python Code comments in machine learning projects. 2022 FSE 856 789 [15]
Dataset-04-Comments-Java Code Comments/java Code comments in SQL and NO-SQL java systems. 2022 EMSE 361 256 [21]
Dataset-07-Issue Issue Trackers Issues in Jira and Google issue trackers. 2022 EMSE 23180 3277 [17]
Dataset-08-Issue Issue Trackers R package issues from rOpenSci and Bioconductor. 2022 SANER 1205 805 [20]
Dataset-10-PR Pull Requests Pull Requests from Spark, Kafka, and React. 2022 ESEM 2122 811 [19]
Dataset-09-PR Pull Requests Pull Requests from Apache echo-system. 2023 EMSE 5000 718 [18]
Dataset-11-Commits Commit Messages Commit Messages from Apache echo-system. 2023 EMSE 5000 747 [18]

Total - - - - 182525 15458 -

amount of contextual information and excel at various natural

language processing tasks.

As of our submission, we found another article [18] pub-

lished in EMSE that shares a strikingly similar research topic

to ours. We believe our work is contemporaneous. However,

we cannot directly replicate the work of Li et al. [18] due to

two reasons: (1) To replicate the best performance as described

in the literature for certain existing models with numerous

parameters, we need to obtain all the corresponding parameter

settings. Unfortunately, the provided replication package2 does

not include the source code required for training their model.

(2) We make a fair comparison between our approach and Li

et al.’s work, we need to train on the same training set and

test on the same test set. However, the provided replication

package2 did not specify the specific training and testing set

they used, we cannot directly compare the performance of the

models based on their results.

However, we believe that our work is more complete than Li

et al [18]. There are two reasons: (1) Our model achieves 80%

accuracy in identifying SATD in new sources using a voting

technique as mentioned in Section VIII, unlike Li et al. [18]

who focused only on the four known sources. (2) Our model’s

datasets include diverse SATD from programming languages’

code comments, obtained through extensive research, while

Li et al. [18] solely relied on Maldonado et al.’s [9] code

comment dataset for Java. This implies that their model failed

to capture the information about SATD in code comments of

different programming languages.

IV. EXPERIMENTAL SETUP

A. Research Questions

Previous approaches for identifying SATD have predomi-

nantly focused on comments in Java code released by Mal-

donado et al. However, SATD exists in code comments not

only for Java types [14]–[16]. The non-Java programming

languages have syntax rules and conventions that differ from

Java. Developers require a tool to identify SATDs in code

comments when developing programs in these languages. Sim-

ilarly, researchers conducting empirical studies on SATDs also

require a tool that can help them automatically identify SATDs

in code comments. This can significantly alleviate the burden

on developers and researchers in manually identifying SATDs.

2https://github.com/yikun-li/satd-different-sources-data

However, it remains unclear whether these trained models and

unsupervised models can effectively detect SATD in other

programming languages. To explore the generalizability of

these trained models and unsupervised models in identifying

SATDs in code comments of non-java types, we first need

to investigate: RQ1: Can existing SATD detection models
identify SATDs across programming languages effectively?
Additionally, SATDs are not only present in source code

comments [17]–[19]. For developers, identifying SATD from

different artifacts can help them keep track of the latest

status of SATD repayment and ensure that certain SATDs

in projects are not overlooked. For researchers, an automated

tool that can identify SATD from different artifacts is needed

when conducting empirical studies on SATD from different

artifacts. Therefore, to explore the generalizability of these

trained models and unsupervised models in identifying SATDs

in three other artifacts, i.e. issue trackers, pull requests, and

commit messages. We need to investigate next: RQ2: Can
existing SATD detection models identify SATDs across
software artifacts effectively? Our RQ1 and RQ2 results

show that previously trained models and unsupervised models

can identify SATDs well in different language projects, but

perform poorly in identifying SATDs from three other different

artifacts. In order to simultaneously identify SATDs from four

different artifacts, We want to know: RQ3: Can we build
a model to accurately identify SATDs across software
artifacts?

B. Datasets

Preprocessing: Since different developers may have differ-

ent writing habits for writing SATDs, for example, they may

write “HACK” as “Hack”, “hack”, etc., we need to apply a

unified preprocessing step to the samples in the comprehensive

dataset. To this end, we refer to the preprocessing procedures

of Huang et al. [10] and Maldonado et al. [9]: (1) Remove all
non-alphabetic characters from the samples, such as “//”

and “**”. However, we preserve exclamation and question

marks during preprocessing, as they are deemed helpful for

identifying SATDs by Maldonado et al. (2) Convert all
English words into lowercase, for example, convert “HACK”

and “Hack” into “hack”. (3) Remove stop words: We use the

stop word list provided by Huang et al. to remove stop words

from the samples. Note that, words with a length of no more

than 2 or no less than 20 are also considered stop words.

807

OTM

Dataset-M
train

Pattern

MAT

NLP

TM

BERT

Dataset-

Dcokerfile

Dataset-

Python

Dataset-

XML

Dataset-

Issue

Dataset-

PR

Dataset-

Commits

test

RQ1

RQ2

MTM

Dataset-

Issue

Dataset-

PR

Dataset-

Commits

Dataset-

Comments

0.9 ratio train set

MT-BERT

NLP

TM

BERT

train

Dataset-

Issue

Dataset-

PR

Dataset-

Commits

Dataset-

Comments

0.1 ratio test sets

test
RQ3

Fig. 2. OTM and MTM scenarios.

C. Experiment Scenarios

In this study, we design two prediction scenarios to inves-

tigate the effectiveness of SATD identification: One-To-Many

(OTM) scenario, which is used to carry out RQ1 and RQ2

experiments, and the Many-To-Many (MTM) scenario, which

is used to conduct RQ3 experiments. The experiments for

OTM in RQ1 can effectively evaluate the generalization of

existing models in predicting SATDs in code comments of

other non-Java programming languages. The experiments for

OTM in RQ2 can effectively evaluate the generalization of

existing models in predicting SATDs in other non-source code

comment artifacts. MTM in RQ3 evaluates the performance of

our approach and existing methods in identifying SATD from

four different artifacts simultaneously. Fig. 2 illustrates the two

experimental scenarios.

• OTM scenario: In the OTM scenario, For RQ1, we use

the corrected Maldonado dataset as the train set, namely

Dataset-M. Samples from three non-Java language projects’

code comments (i.e., Dataset-Dockerfile, Dataset-Python,

Dataset-XML) are used as the test sets. The aim is to

validate the effectiveness of existing models trained on the

Maldonado dataset and unsupervised learning methods in

identifying SATD in other programming languages. For RQ2,

we also train the existing model with Dataset-M and use

data from the other three artifacts (i.e., issue trackers, pull

requests, and commit messages) as the test sets to verify

whether the existing model can effectively identify SATD

from different artifacts. Note that, because we aim to use as

many test sets as possible to evaluate the existing models,

we merge the non-code comments datasets in Table II based

on their artifacts to validate the generalization of existing

models in identifying SATDs across software artifacts. For

example, Dataset-07-Issue and Dataset-08-Issue are merged

into a new sub-dataset named Dataset-Issue, and likewise, the

other non-code comments datasets are merged into Dataset-
PR and Dataset-Commits, respectively.

• MTM scenario: Due to our aim is identifying SATDs

from four artifacts simultaneously, to guarantee the input

features as many as possible and the data balance across

software artifacts in model training, we merge the six sub-

datasets in code comments and name it Dataset-Comments.

At this point, we have four datasets from different software

artifacts, namely Dataset-Issue, Dataset-PR, Dataset-Commits,

and Dataset-Comments. Then, we divide the four different

artifact datasets into four train sets and four test sets with

a 9:1 ratio. Here, following prior studies [17]–[19], we adopt

a stratified sampling method [37] to divide the dataset into

train and test sets, ensuring that the proportion of SATD

and non-SATD samples is the same in both sets. The four

train sets are combined to train our approach and existing

supervised models, and the four test sets are used to evaluate

their performance.

D. Evaluation Metrics

In this work, we use Precision, Recall, and F1-score (one

type of harmonic mean between Precision and Recall) as

evaluation metrics, which are widely used in the evaluation

of SATD recognition models [9]–[12], [32], [34]. Here are the

calculation formulas for the three evaluation metrics:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 = 2× Precision×Recall

Precision+Recall

In the above formulas, TP (True Positive) represents the

number of SATDs predicted by the model as SATDs, FP (False

Positive) represents the number of non-SATDs predicted by

the model as SATDs and FN (False Negative) represents the

number of SATDs predicted by the model as non-SATDs.

V. RQ1: CAN EXISTING SATD DETECTION MODELS

IDENTIFY SATDS ACROSS PROGRAMMING LANGUAGES

EFFECTIVELY?

A. RQ1 OTM Experiment Description

To investigate RQ1, we first perform a re-evaluation of pre-

vious SATD detection models using the corrected Maldonado

dataset [22]. More specifically, for supervised models (i.e.,

NLP, TM, BERT), we follow the original authors’ work by

retraining these supervised models in a cross-project leave-

one-out method (9 projects for training, 1 project for testing)

[9]. To ensure the fairness of the comparison results, for

unsupervised models (i.e., Pattern, MAT), we also select 1

project at a time for testing.

For the purpose of investigating the models’ ability to pre-

dict completely new data, we perform deduplication between

the train set and three test sets, ensuring that each test set

does not contain any data from the train set. Then, following

the evaluation approach in previous studies, we average the

808

results of projects in Dataset-M to establish the baseline metric

of these models in identifying SATDs in non-Java projects.

Finally, we perform the RQ1 experiment in the OTM scenario.

B. Experiment Result Analysis

In this experiment, we record the F1-score of previous

SATD identification models in identifying SATDs across pro-

gramming languages. In addition, to evaluate the performance

of the existing models in identifying SATD comments from

non-Java projects more intuitively, we calculate the average

F1-scores of Dataset-Dockerfile, Dataset-Python, and Dataset-

XML and compare them with F1-score of Dataset-M. We

calculate the change value (expressed in italics). Table III

shows our experimental results.

Table III
F1-score of existing approaches on SATDs from different language projects.

Dataset
Approach

Pattern MAT NLP TM BERT

Dataset-M (baseline metric) 0.247 0.747 0.761 0.710 0.834

Dataset-Dockerfile 0.273 0.869 0.848 0.759 0.880
Dataset-Python 0.156 0.957 0.954 0.956 0.965
Dataset-XML 0.248 0.802 0.883 0.895 0.931

Average 0.226 0.876 0.895 0.870 0.925
Average-Change (-8.5%) (+17.3%) (+17.6%) (+22.5%) (+10.9%)

Experimental results show that four out of five models
show improved F1-score in identifying SATDs in the other
three non-Java datasets, with the TM method achieving the

highest improvement from 71.0% to 87.0%, representing an

overall improvement of 22.5%. However, the Pattern method

shows a decrease in the average F1-score from 24.7% to

22.6%, indicating an overall decline of 8.5%, this may be

due to the limitations of pattern recognition methods, as

Potdar et al. [6] only investigated SATDs in four projects

(i.e., Eclipse, Chromium OS, ArgoUML, and Apache httpd)

and manually identified 62 keyword patterns based on these

projects. Therefore, Pattern can achieve good precision but the

overall F1-score is low [10]. In contrast, the other four methods

can effectively identify SATDs in code comments of different

language projects. In fact, this is easy to understand, according

to the study by Guo et al. [11], developers tend to introduce

some prior knowledge when recording certain types of SATDs

information, such as using keywords like “todo”, “fixme”,

“hack”, “xxx”. This prior knowledge is also likely to exist in

non-Java projects, which implies that the model trained on the

Dataset-M can achieve promising performance in identifying

SATDs in other non-Java projects as well. Existing models

can capture the differences between different programming

languages by training from the Java dataset. This shows

the common characteristics between different programming

languages and the generability of the model.

Apart from Pattern, the other four methods achieve the

average F1-score from 0.870 to 0.925 which is higher

than the F1-score on Dataset-M. In summary, previous

SATD identification models can identify SATDs in code

comments from different languages effectively.

VI. RQ2: CAN EXISTING SATD DETECTION MODELS

IDENTIFY SATDS ACROSS SOFTWARE ARTIFACTS

EFFECTIVELY?

A. RQ2 OTM Experiment Description

Following RQ1, to ensure consistency with the performance

of existing models trained on Dataset-M, we compute the

average of the results from projects in Dataset-M to establish

the baseline metric of these models in identifying SATDs from

different software artifacts. Then, we remove duplicates from

these four artifacts, ensuring that Dataset-Issue, Dataset-PR,

and Dataset-Commits do not contain data from Dataset-M.

Finally, we perform the RQ2 experiment in the OTM scenario.

B. Experiment Result Analysis

Table IV presents the F1-score of existing SATD Identifica-

tion models trained on Dataset-M and unsupervised learning

methods for predicting SATDs from other three different

software artifacts. The best and worst performance values of

each method on different datasets are highlighted in bold and

underlined, respectively.

Table IV
F1-score of existing approaches on SATDs across software artifacts.

Dataset
Approach

Pattern MAT NLP TM BERT

Dataset-M (baseline metric) 0.247 0.747 0.761 0.710 0.834

Dataset-Issue 0.031 0.024 0.242 0.291 0.244
Dataset-PR 0.030 0.032 0.369 0.394 0.385
Dataset-Commits 0.008 0.024 0.145 0.287 0.164

Average 0.023 0.027 0.252 0.324 0.264
Average-Change (-90.7%) (-96.4%) (-66.9%) (-54.4%) (-68.3%)

The result shows that existing approaches experience a sig-

nificant drop in performance when applied to find out SATDs

from three other artifacts. In detail, the Pattern approach

exhibits a considerable decline in its F1-score from 24.7% on

Dataset-M to 2.3%, with an average drop of 90.7%. Similarly,

the MAT approach drops from an F1-score of 74.7% to 2.7%,

with an average drop of 96.7%. The other three supervised

learning models, NLP, TM, and BERT, drop by 66.9%, 54.4%,

and 68.3%, respectively.

Furthermore, we observe that unsupervised models exhibit

a more pronounced performance degradation trend compared

to supervised models. To elaborate, the two unsupervised

approaches, namely Pattern, and MAT achieve an average F1-

score of only 2.5% in identifying SATDs from the other three

different software artifacts, resulting in a performance decrease

of over 90% compared to the baseline metric. In contrast, the

other three supervised learning approaches, namely NLP, TM,

and BERT, achieve an average F1-score of 28%, representing

a performance drop of over 60% compared to the baseline

metric. This suggests that the supervised models may learn

more features that are helpful in identifying SATDs across

different software artifacts but with limited effectiveness.

The existing supervised models trained on Dataset-M and

some unsupervised models achieve an average F1-score of no

more than 32.4% (the performance of the TM) in identifying

SATDs from the other three different software artifacts. In

809

summary, the experimental results show that these existing

SATD identification approaches can not effectively identify

SATDs in issue trackers, pull requests and commit messages.

There are two reasons which may lead to the results: (1) the

Java dataset is not representative which does not contain the

key features in SATDs across other software artifacts. (2) these

existing models cannot generalize on the different software

artifacts which are only trained by the Java dataset. These

motivate us to use all software artifacts data to train to learn

the characteristics of SATD from all software artifacts and use

a better model for generalization.

Previously trained models and unsupervised approaches

demonstrate limited effectiveness in identifying SATDs

across software artifacts. On average, the F1-score has

dropped between -54.4% to -96.4%.

VII. RQ3: CAN WE BUILD A MODEL TO ACCURATELY

IDENTIFY SATDS ACROSS SOFTWARE ARTIFACTS?

A. Multi-task-Learning

Multi-task learning is a machine learning approach that

involves training a single model to perform multiple, distinct

tasks simultaneously, with the aim of improving the model’s

overall performance across all tasks. By leveraging shared

representations across different tasks, multi-task learning can

lead to better generalization and faster learning, while also

reducing the need for task-specific models [7], [38]. In ad-

dition, multi-task learning can also reduce the training time

and hardware resource requirements, as multiple tasks can be

trained simultaneously on the same model. Multi-task learning

has been successfully applied in various domains such as

natural language processing [38], [39], speech recognition

[40], and computer vision [41], [42].

B. MT-BERT-SATD Details

For identifying SATDs across different software artifacts

(such as issue, PR, commit, and code comments), multi-

task learning can learn the different features from them and

share parameters when training models to achieve a better

generalization than other single-task learning methods. In this

study, the SATD identification task for each kind of software

artifact is considered as a subtask. Meanwhile, we use BERT

which has achieved amazing results in text classification tasks

[43] to achieve multi-task learning. Fig.3 shows the overall

structure of our approach and its application scenarios. Here,

we use the SATD in the collected data (issue trackers, pull

requests, commit messages, and code comments) as examples.

We validated the generalization ability of our model on new

artifacts in Section VIII. We believe that utilizing multi-

task learning will have strong generalization capabilities. To

incorporate additional information beyond comments, we used

SATD labels and artifact-type labels. In the encoder layer,

we shared BERT parameters to capture shared information

among artifacts, such as phrases indicating poor design or

incomplete tests. Four classifiers enable the learning of specific

information related to SATD in each artifact. This design effec-

tively captured SATD variances and similarities information in

four artifacts. Results confirmed the superiority of multi-task

learning models.
In this subsection, we describe the design details of our

MT-BERT-SATD (Multi-task Learning BERT for SATD Iden-

tification) approach.

• Input Feature: Given an input sample tokens vector x,

x = [x1, x2, ..., xn], where x represents the text representation

of a sample, we need to add the [CLS] and [SEP] tokens

at the beginning and end of the x vector, respectively. Here,

[CLS] stands for “CLaSsification” and always appears at the

beginning of the input, while [SEP] stands for “SEPeration”

and is used to separate sentence pairs. Since we only have one

segment x, [SEP] represents the end of the input. The variable

y represents the label of the sample, where y ∈{0, 1}. In this

context, y = 1 denotes that the corresponding sample belongs

to “SATDs”, while y = 0 denotes that the sample belongs

to “non-SATDs”. In addition, let z denote the category of the

task to which a sample belongs, and z ∈{1, 2, 3, 4}. As shown

in Fig.3, the identification of SATDs can be divided into four

tasks, where z = 1 represents that the sample is from issue

trackers, and similarly, when z = 2, 3, and 4, it represents that

the sample is from pull requests, commit messages, and code

comments, respectively. Finally, the input feature is composed

of three parts, namely x, y, and z, and can be represented as:

F (φ) = (x(φ), yθ, zθ) (1)

• Embedding: The input representation x of BERT consists

of the sum of three embedding vectors: Token Embeddings,

Segment Embeddings, and Position Embeddings [44].

• Encoder: During the encoder stage, we use a framework

comprising 12 Transformer Blocks, each incorporating a

multi-head self-attention layer and a Multilayer Perceptron

(MLP). For multi-task training, the data from all four tasks

(issue trackers, pull requests, commit messages, code com-

ments) are utilized to jointly optimize the parameters of all 12

layers, with the layer parameters being shared across different

tasks.

• Pooler: Here, we utilize the pooler layer of BERT by

taking the hidden state corresponding to the first token of

each input sequence as the pooled representation of the entire

sequence. We then perform a linear transformation and a non-

linear transformation with a fully connected layer and a tanh
activation function to obtain the final pooled representation,

which is used for our downstream SATD identification task.

Specifically, the pooler layer is implemented by the following

formula:

output = tanh(W × T [CLS] + b) (2)

In this formula, T = [T1, T2, T3, ..., Tn], where T [CLS]
denotes the hidden state corresponding to the first token of

the model. W is the weight matrix of the fully connected

layer, b is the bias vector, and tanh is the activation function.

• Classifier: The final classifier layers are designed for each

SATD identification task. Each linear classifier is a fully

810

GitHub

Repository

Issue

Tracker

GitHub

PR Commit
Code

Comments
Issue

Trained

Model

SATD

Issue PR Commit
Code

Comments

Issue Feature PR Feature Commit Feature
Code

Comments Feature

E1 E2 E3 En-2 En-1 En

Layer: Multiheaded Self-Attention + MLP

Layer: Multiheaded Self-Attention + MLP

Layer: Multiheaded Self-Attention + MLP

............

Encoder

shared

layers

Pooler

Embedding

T1 T2 T3 Tn-2 Tn-1 Tn

Linear

Classifier

Linear

Classifier

Linear

Classifier

Linear

Classifier
Offline

Training

BERT

Online

Prediction

Fig. 3. MT-BERT-SATD Model Architecture: The model comprises of the Embedding, Encoder, Pooler, and four final classifier layers. Four artifacts of
data serve as inputs, which are first encoded through the Embedding layer. The Encoder layer, with shared parameters, adjusts the model parameters. The
output of the Encoder layer is then fed into the Pooler layer to obtain the final layer representation of the model output. Finally, the data after Pooler is input
into the four sub-classifiers to perform the specific SATD classification task.

connected layer that includes a weight matrix Wi and a bias

vector bi. The pooled hidden state T [CLS] from the pooler

layer is used as input, and the output vector is obtained

by matrix multiplication and addition of the bias. Then the

softmax function is applied to map the output vector to

a probability distribution y, which is used for the SATD

identification tasks from four different software artifacts. We

also fine-tune the classifiers for the four tasks and save the

trained weights.

y = softmax(Wi × T [CLS] + bi),

y ∈ (0, 1), i ∈ {1, 2, 3, 4} (3)

During the training phase, we minimize the sum of cross-

entropy loss functions for SATD identification tasks from the

four different software artifacts, with the goal of achieving the

best average performance. The loss weight of each task here

is adjustable, allowing MT-BERT-SATD to pay more attention

to certain tasks and thus enhance their importance. The final

loss function is represented as follows:

min
θ

w1Lissue(θ) + w2Lpr(θ)

+w3Lcommit(θ) + w4Lcomments(θ)
(4)

C. Experimental Settings

We use Transformer with 12 layers, 768 hidden sizes, and 12

attention heads. The size of the feed-forward layer is 3072. We

use BERTAdam as our optimization, with an initial learning

rate of 2e-5, β1 = 0.9, β2 = 0.999, and L2 weight decay

of 0.01. We set the learning rate warmup to 0.1. We use a

dropout rate of 0.1 on all layers and utilize early stopping to

avoid model overfitting. We set four linear classifiers following

the pooler. We use gelu [45] as the activation function for the

hidden layers. The training loss is the sum of the weighted

cross-entropy losses of all tasks [46]. We fine-tune the bert-

base model with a batch size of 64. We compute the mean

values of precision, recall, and F1-score to evaluate our model

using 10-fold cross-validation.

D. Effectiveness of MT-BERT-SATD

We perform 10-fold cross-validation to demonstrate the ef-

fectiveness of our approach. Specifically, we remove duplicate

data from each training and test set to ensure that test sets do

not contain any data from the train set, thus verifying the

predictive ability of our approach for new data.

Table V
The performance of our approach MT-BERT-SATD over MTM scenario.

Dataset Metrics

Precision Recall F1-score

Dataset-Issue 0.659 0.625 0.640
Dataset-PR 0.620 0.636 0.625
Dataset-Commit 0.787 0.675 0.724
Dataset-Comments 0.862 0.855 0.859

Average 0.732 0.698 0.712

Table V presents the precision, recall, and F1-score metrics

of MT-BERT-SATD for identifying SATDs across software ar-

tifacts simultaneously. The best and worst performance values

are highlighted in bold and underlined, respectively. Our ap-

proach achieves an average F1-score of 71.2% for identifying

SATDs from four different software artifacts, with the highest

F1-score of 85.9% obtained for SATDs from code comments.

However, the performance of SATD identification for the other

three artifacts is slightly lower, with an average F1-score of

66.3%. Indeed, this phenomenon can be easily comprehended

since SATDs in code comments are often accompanied by

apparent prior knowledge, such as the usage of keywords like

“TODO” and “FIXME”. These prior knowledge cues facilitate

the identification of SATDs in code comments. However, the

other three artifacts of SATD do not have such explicit prior

knowledge. Specifically, OSS developers may report urgent

SATDs or discuss SATDs in issue trackers without the above

mentioned keywords [29], [30]. These discussions and reports

can vary depending on the project and the urgency of the

811

technical debt, making the identification of SATDs in issue

trackers relatively challenging. In addition, developers may

discuss existing SATDs in Pull Requests, but such discussions

often lack clear indicators [19], which also increases the

difficulty of identifying SATDs in Pull Requests.

Overall, our approach achieves a precision of 73.2%, recall

of 69.8%, and F1-score of 71.2% in identifying four artifacts

simultaneously. These results demonstrate the practical effec-

tiveness of our approach in identifying SATD.

E. Performance Comparison with other Existing SATD Iden-
tification Approaches

Table VI
Comparison of F1-score to other existing methods for recognizing SATDs.

Dataset
Approach

NLP TM BERT MT-BERT-SATD

Dataset-Issue 0.488 0.478 0.628 0.640
Dataset-PR 0.492 0.536 0.617 0.625
Dataset-Commits 0.466 0.597 0.652 0.724
Dataset-Comments 0.737 0.597 0.827 0.859

Average 0.546 0.552 0.681 0.712

We now conduct experiments in the MTM scenario com-

paring our approach with three existing SATD identification

models. Among them, BERT, used by Prenner et al [13]., is

considered a powerful baseline.

Table VI shows our comparison results. Our approach out-

performs NLP and TM, with an average F1-score improvement

of 30.4% and 29.0% respectively, across the four different

software artifacts. Compared to BERT, our approach achieves

a performance improvement of 1.3% to 11.0% on the four

datasets. Particularly, on the Dataset-Commit with only 747

SATD samples, our approach outperforms BERT by 11.0%.

This evidence indicates that MT-BERT-SATD is more flexible

for small training corpora. In other words, when adding a

new SATD training sample artifact, our approach is more

likely to achieve better performance with only a small amount

of training data. Overall, our approach achieves an average

F1-score of 71.2%, which represents a 4.6% improvement

over the BERT proposed by Prenner et al [13]. Additionally,

our approach achieves an average precision of 73.2%, which

represents an improvement of 11.2% compared to BERT’s

65.8%. In comparison, our approach achieves an average recall

of 69.8%, which represents a decrease of 1.3% compared to

BERT’s 70.7%. Based on previous work, developers dislike

dealing with false positives (i.e., low precision) [47], [48].

Therefore, Our method performs better than the BERT method

overall.

Our approach, MT-BERT-SATD, achieves an average F1-

score of 71.2% in identifying SATDs across the 4 artifacts,

outperforming existing NLP, TM, and BERT models.

Furthermore, our approach requires only a small amount

of training data to achieve good performance in detecting

SATD from a new artifact.

Table VII
Cross-artifact prediction performance of our approach.

Dataset New Metrics Origin Drop
Precision Recall F1-score

Dataset-Issue 0.481 0.446 0.463 0.640 -27.7%
Dataset-PR 0.588 0.571 0.579 0.625 -7.36%
Dataset-Commit 0.670 0.566 0.614 0.724 -15.2%
Dataset-Comments 0.553 0.739 0.633 0.859 -26.3%

Average 0.573 0.581 0.572 0.712 -19.7%

VIII. DISCUSSION

A. MT-BERT-SATD Predictions on New Artifacts

In the previous sections, we validate the ability of MT-
BERT-SATD to identify SATDs simultaneously from four arti-

facts: issue trackers, pull requests, commit messages, and code

comments. However, we want to investigate the predictive

performance of our approach for a new artifact of SATDs that

has not been trained before. At the same time, we also want

to investigate which artifacts have a significant impact on the

effectiveness of our model. Inspired by the work of Huang et

al. [10], we adopt a sub-classifier voting mechanism to identify

SATDs from a new artifact. In detail, for sample data in a

new artifact, the four subclassifies in our model will classify

it simultaneously. If at least two sub-classifiers consider the

sample as SATD, our model marks it as SATD eventually,

otherwise, it is marked as non-SATD. Next, we conduct a

cross-artifacts prediction experiment, where three artifacts of

data are used as the training set, and another artifact of data

is used as the test set. Table VII shows our experimental

results. The last two columns show the F1-score of our

approach in MTM scenarios when the artifact is integrated,

as well as the performance degradation ratio of the F1-score

in cross-artifact prediction compared to the previous F1-score.

The experimental results demonstrate that the absence of

Dataset-Issue as an artifact leads to the highest performance

degradation of 27.7% in cross-artifact prediction, followed by

Dataset-Comments, which causes a decline of 26.3%. This

implies that issue trackers and code comments are the two

most influential artifacts on the model performance. Moreover,

our approach achieves an average F1-score of 57.2% in cross-

artifact prediction. It is expected that the integration of all

four artifacts of data in our approach can further enhance the

performance of our model in predicting new artifacts.

B. Efficacy of MT-BERT-SATD in the wild

Since we just want to evaluate the performance of our tool

in the new real dataset, we select the release changelogs as the

research object. This is because (1) the release changelog is

one of the software artifacts with the richest textual resources,

and (2) the SATD in release logs is never explored before.

To explore SATDs in release changelogs in greater detail,

we select six popular projects from GitHub that belong to

different technology domains in the real world. We collect

the release changelogs of these six projects using the GitHub

API. In order to obtain smaller granularity sample data, we

split the entire release description based on individual change

items which are referred to as changelog items. Table VIII

812

Table VIII
The list of selected real-world popular software projects.

Project Description Stars Contributions #Changelog Items #SATD % of SATD

Angular A popular framework for building web applications. 87.4k 1697 1978 120 6.1
Bootstrap A popular front-end development framework. 163k 1358 2115 310 14.7
Numpy The fundamental package for scientific computing with Python. 23.2k 1465 1779 337 18.9
Pytorch A popular open-source machine learning framework. 65.1k 2731 8383 765 9.1
React A JavaScript library for building user interfaces. 206k 1615 716 203 28.4
Tensorflow An end-to-end open source platform for machine learning. 173k 3353 9764 785 8.0

Average - 119.6k 2036 4123 420 10.2

displays information about the six projects, including their

metadata, such as brief descriptions and the total number of

release changelog items, etc. The last two columns of Table

VIII present our experimental results. In total, among 24,735

changelog items, MT-BERT-SATD marks 2,520 of them as

SATD-related. Compared to the source code comments, we

find that the release changelogs record more SATD, ranging

from 6.1% to 28.4%, with an average of 10.2%. This may be

attributed to the preference of OSS developers to summarize

the SATD-related information in release changelogs for better

software maintenance and upgrade management.

Manual verification of the results predicted by MT-
BERT-SATD. We randomly pick 60 samples each (a total of

120 changelog items) from the release changelog items that

are labeled as having TD and no TD for further analysis.

Next, using the SATD classification criteria proposed by Li

et al. [17], the first two authors independently and manually

flag each of the 120 changelog items as either containing

SATD or not containing SATD. Cohen’s Kappa coefficient

[49] is 0.80, which is considered to be a relatively high level

of agreement. In case of inconsistent decisions, the first two

authors discuss and reach a consensus. Finally, we compare

their decisions with the results obtained from our multi-

task learning model. The comparisons show that there are

14 changelog items labeled as non-SATD by authors among

60 changelog items predicted as SATD by our model and

10 changelog items labeled as SATD by authors among 60

changelog items predicted as non-SATD by our model.

Overall, our approach achieves 80%, 78%, 83%, and 80%

on Accuracy, Precision, Recall, and F1 respectively in de-

tecting SATDs from the release changelogs in real-world

projects. Considering that release changelogs represent a new

artifact and the fact that the six popular real-world projects

we have selected come from different domains. Therefore, it

is impossible for the integrated dataset collected from four

known artifacts to fully cover the characteristics of SATDs in

new domains. This shows the generalization ability of our
model. We believe that the performance of our model can

be further improved as training data from new artifacts are

incorporated into our multi-task learning model.

IX. THREATS TO VALIDITY

Threats of internal validity. Since this paper aims to explore

the real progress of SATD identification in our community, it

is essential to select some of the most representative studies.

To this end, the approaches investigated in this paper are

all selected from top international conferences and journals,

which have been widely cited and discussed in our community.

In addition, although code for two supervised SATD detection

approaches, namely CNN [12] and HATD [34], have not been

made publicly available, as reported by Prenner et al. [13],

the BERT model performance is similar to that of HATD and

significantly higher than that of the CNN model. Therefore,

we believe that this threat has been minimized.

Threats of external validity. In this work, we utilize multi-task

learning to train a sub-classifier for each of the four known

artifacts and investigate how to utilize MT-BERT-SATD for

identifying SATDs in a new artifact. Specifically, we employ

a sub-classifier voting mechanism to identify SATDs in release

changelogs. Upon manual verification of the results reported

by our approach, we determine that it has attained an accuracy

of 80% on 120 randomly chosen changelogs. Our results show

that MT-BERT-SATD is effective in identifying SATDs in new

artifacts beyond the four original artifacts.

X. CONCLUSION AND FUTURE WORK

In this paper, we investigate the extent of progress made by

our community in the field of SATD identification. We find

that existing SATD models can effectively identify SATD in

code comments of non-Java projects. However, they are inef-

fective in simultaneously identifying SATD in the other three

new artifacts (i.e., issue trackers, pull requests, and commit

messages). Further attention is needed for SATD identifica-

tion. Additionally, to identify SATD from the four different

software artifacts, we propose a multi-task learning model

based on BERT, namely MT-BERT-SATD. Our experimental

results demonstrate that MT-BERT-SATD achieves an average

F1-score of 71.2% when identifying SATD from all four

artifacts, outperforming existing SATD identification methods

from 4.6% to 30.4%. Furthermore, we demonstrate that well-

trained MT-BERT-SATD remains effective in identifying SATD

from new artifacts [26] other than the four known ones. To

our best knowledge, this means that MT-BERT-SATD is the

first open-source model capable of identifying SATD from

all artifacts. In the future, we will collect SATD from other

artifacts to train our model to enhance the generalizability of

our model, even though the quantity may be limited.

DATA AVAILABILITY. Datasets and the source code

can be available at https://github.com/zscszndxdxs/

2023-MT-BERT-SATD.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

813

[2] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in 2015 IEEE 7Th international
workshop on managing technical debt (MTD), IEEE, 2015, pp. 9–15.

[3] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact
of self-admitted technical debt on software quality,” in 2016 IEEE
23Rd international conference on software analysis, evolution, and
reengineering (SANER), IEEE, vol. 1, 2016, pp. 179–188.

[4] Y. Kamei, E. d. S. Maldonado, E. Shihab, and N. Ubayashi, “Using
analytics to quantify interest of self-admitted technical debt.,” in
QuASoQ/TDA@ APSEC, 2016, pp. 68–71.

[5] Y. Miyake, S. Amasaki, H. Aman, and T. Yokogawa, “A replicated
study on relationship between code quality and method comments,”
Applied computing and information technology, pp. 17–30, 2017.

[6] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, IEEE, 2014, pp. 91–100.

[7] Y. Zhang and Q. Yang, “An overview of multi-task learning,” National
Science Review, vol. 5, no. 1, pp. 30–43, 2018.

[8] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “An exploratory
study on the introduction and removal of different types of technical
debt in deep learning frameworks,” Empirical Software Engineering,
vol. 26, pp. 1–36, 2021.

[9] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted technical
debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11,
pp. 1044–1062, 2017.

[10] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-
admitted technical debt in open source projects using text mining,”
Empirical Software Engineering, vol. 23, pp. 418–451, 2018.

[11] Z. Guo, S. Liu, J. Liu, et al., “How far have we progressed in
identifying self-admitted technical debts? a comprehensive empirical
study,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 4, pp. 1–56, 2021.

[12] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: From perfor-
mance to explainability,” ACM transactions on software engineering
and methodology (TOSEM), vol. 28, no. 3, pp. 1–45, 2019.

[13] J. A. Prenner and R. Robbes, “Making the most of small software en-
gineering datasets with modern machine learning,” IEEE Transactions
on Software Engineering, vol. 48, no. 12, pp. 5050–5067, 2021.

[14] H. Azuma, S. Matsumoto, Y. Kamei, and S. Kusumoto, “An empir-
ical study on self-admitted technical debt in dockerfiles,” Empirical
Software Engineering, vol. 27, no. 2, p. 49, 2022.

[15] D. OBrien, S. Biswas, S. Imtiaz, R. Abdalkareem, E. Shihab, and
H. Rajan, “23 shades of self-admitted technical debt: An empirical
study on machine learning software,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 734–746.

[16] T. Xiao, D. Wang, S. McIntosh, et al., “Characterizing and mitigating
self-admitted technical debt in build systems,” IEEE Transactions on
Software Engineering, vol. 48, no. 10, pp. 4214–4228, 2021.

[17] Y. Li, M. Soliman, and P. Avgeriou, “Identifying self-admitted techni-
cal debt in issue tracking systems using machine learning,” Empirical
Software Engineering, vol. 27, no. 6, p. 131, 2022.

[18] Y. Li, M. Soliman, and P. Avgeriou, “Automatic identification of
self-admitted technical debt from four different sources,” Empirical
Software Engineering, vol. 28, no. 3, pp. 1–38, 2023.

[19] S. Karmakar, Z. Codabux, and M. Vidoni, “An experience report
on technical debt in pull requests: Challenges and lessons learned,”
in Proceedings of the 16th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2022, pp. 295–300.

[20] J. Y. Khan and G. Uddin, “Automatic detection and analysis of
technical debts in peer-review documentation of r packages,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2022, pp. 765–776.

[21] B. A. Muse, C. Nagy, A. Cleve, F. Khomh, and G. Antoniol, “Fixme:
Synchronize with database! an empirical study of data access self-
admitted technical debt,” Empirical Software Engineering, vol. 27,
no. 6, p. 130, 2022.

[22] Z. Yu, F. M. Fahid, H. Tu, and T. Menzies, “Identifying self-admitted
technical debts with jitterbug: A two-step approach,” IEEE Transac-
tions on Software Engineering, vol. 48, no. 5, pp. 1676–1691, 2020.

[23] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted
technical debt removal a real removal? an in-depth perspective,” in

Proceedings of the 15th international conference on mining software
repositories, 2018, pp. 526–536.

[24] M. Iammarino, F. Zampetti, L. Aversano, and M. Di Penta, “Self-
admitted technical debt removal and refactoring actions: Co-occurrence
or more?” In 2019 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), IEEE, 2019, pp. 186–190.

[25] Y. Li, M. Soliman, and P. Avgeriou, “Identification and remediation of
self-admitted technical debt in issue trackers,” in 2020 46th Euromi-
cro conference on software engineering and advanced applications
(SEAA), IEEE, 2020, pp. 495–503.

[26] F. Zampetti, G. Fucci, A. Serebrenik, and M. Di Penta, “Self-admitted
technical debt practices: A comparison between industry and open-
source,” Empirical Software Engineering, vol. 26, pp. 1–32, 2021.

[27] Y. Li, M. Soliman, P. Avgeriou, and L. Somers, “Self-admitted techni-
cal debt in the embedded systems industry: An exploratory case study,”
IEEE Transactions on Software Engineering, 2022.

[28] A. Peruma, E. A. AlOmar, C. D. Newman, M. W. Mkaouer, and A.
Ouni, “Refactoring debt: Myth or reality? an exploratory study on the
relationship between technical debt and refactoring,” in Proceedings
of the 19th International Conference on Mining Software Repositories,
2022, pp. 127–131.

[29] S. Bellomo, R. L. Nord, I. Ozkaya, and M. Popeck, “Got technical
debt? surfacing elusive technical debt in issue trackers,” in Proceedings
of the 13th international conference on mining software repositories,
2016, pp. 327–338.

[30] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente, “Beyond the
code: Mining self-admitted technical debt in issue tracker systems,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 137–146.

[31] L. Xavier, J. E. Montandon, F. Ferreira, R. Brito, and M. T. Valente,
“On the documentation of self-admitted technical debt in issues,”
Empirical Software Engineering, vol. 27, no. 7, p. 163, 2022.

[32] H. Tu and T. Menzies, “Debtfree: Minimizing labeling cost in self-
admitted technical debt identification using semi-supervised learning,”
Empirical Software Engineering, vol. 27, no. 4, p. 80, 2022.

[33] Z. Guo, S. Liu, T. Tan, Y. Li, and L. C. and YM Zhou and BW Xu,
“Self-admitted technical debt research: Problem, progress, and chal-
lenges,” Journal of Software, vol. 33, no. 1, pp. 26–54, 2021.

[34] X. Wang, J. Liu, L. Li, X. Chen, X. Liu, and H. Wu, “Detecting and
explaining self-admitted technical debts with attention-based neural
networks,” in Proceedings of the 35th IEEE/ACM International Con-
ference on Automated Software Engineering, 2020, pp. 871–882.

[35] C. Manning and D. Klein, “Optimization, maxent models, and condi-
tional estimation without magic,” in Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology: Tutorials-Volume
5, 2003, pp. 8–8.

[36] F. Sebastiani, “Machine learning in automated text categorization,”
ACM computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[37] G. W. Imbens and T. Lancaster, “Efficient estimation and stratified
sampling,” Journal of Econometrics, vol. 74, no. 2, pp. 289–318, 1996.

[38] S. Ruder, “An overview of multi-task learning in deep neural net-
works,” arXiv preprint arXiv:1706.05098, 2017.

[39] K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher, “A joint many-
task model: Growing a neural network for multiple nlp tasks,” arXiv
preprint arXiv:1611.01587, 2016.

[40] M. L. Seltzer and J. Droppo, “Multi-task learning in deep neural net-
works for improved phoneme recognition,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE, 2013,
pp. 6965–6969.

[41] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning
with attention,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 1871–1880.

[42] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7482–7491.

[43] D. Croce, G. Castellucci, and R. Basili, “Gan-bert: Generative adver-
sarial learning for robust text classification with a bunch of labeled
examples,” in Proceedings of the 58th annual meeting of the associa-
tion for computational linguistics, 2020, pp. 2114–2119.

[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

814

[45] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic
regularizers with gaussian error linear units,” CoRR, abs/1606.08415,
vol. 3, 2016.

[46] F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-
trained language model for code completion,” in Proceedings of the
35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 473–485.

[47] A. Bessey, K. Block, B. Chelf, et al., “A few billion lines of code later:
Using static analysis to find bugs in the real world,” Communications
of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[48] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? manage it? ignore it? software practitioners and technical
debt,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, 2015, pp. 50–60.

[49] M. L. McHugh, “Interrater reliability: The kappa statistic,” Biochemia
medica, vol. 22, no. 3, pp. 276–282, 2012.

815

