
On the Way to Microservices: Exploring Problems
and Solutions from Online Q&A Community
Menghan Wu†, Yang Zhang†, Jiakun Liu∗, Shangwen Wang†, Zhang Zhang†, Xin Xia§, Xinjun Mao†

†National University of Defense Technology, Changsha, China
∗Central South University, Changsha, China

§Huawei, Hangzhou, China
{wumengh, yangzhang15, wangshangwen13, zhangzhang14, xjmao}@nudt.edu.cn,

jiakunliu17@outlook.com, xin.xia@acm.org

Abstract—Microservice architecture is a dominant architec-
tural style in SaaS industry, which helps to develop a single
application as a collection of independent, well-defined, and inter-
communicating services. The number of microservice-related
questions in Q&A websites, such as Stack Overflow, has ex-
panded substantially over the last years. Due to its increasing
popularity, it is essential to understand the existing problems
that microservice developers face in practices as well as the
potential solutions to these problems. Such an investigation of
problems and solutions is vital for long-term, impactful, and
qualified research and practices in microservice community.
Unfortunately, we currently know relatively little about such
knowledge. To fill this gap, we conduct a large-scale in-depth
empirical study on 17,522 Stack Overflow microservice-related
posts. Our analysis leads to the first taxonomy of microservice-
related topics based on the software development process. By
analyzing the characteristics of the accepted answers, we find
that there are fewer experts in the microservice than other
domains, and such a phenomenon is most significant with respect
to the microservice design phase. Furthermore, we perform
manual analysis on 6,013 answers accepted by developers and
distill 47 general solution strategies for different microservice-
related problems, 22 of which are proposed for the first time.
For instance, several problems inherent in the delivery phase
can be lessened by referring to external sources like GitHub
code examples. Our findings can therefore facilitate research and
development on emerging microservice systems.

Index Terms—Microservices, Empirical Study, Stack Overflow

I. INTRODUCTION

Microservice architecture (MSA), as a novel architec-
tural style, has become particularly popular in cloud-based
Software-as-a-Service (SaaS) offerings, together with the
spread of DevOps practices and containers technologies, e.g.,
Docker and Kubernetes [1]. As Lewis and Fowler’s blog
stated, microservices can provide greater software develop-
ment agility and improve the scalability of deployed applica-
tions [2]. Due to its advantages, many successful companies
have adopted this new architectural style, including Amazon,
IBM, LinkedIn, and eBay [3]. It is not surprising then that
the O’Reilly report [4] found that 61% of organizations
had used microservices for a year or more. Moreover, the
survey conducted by Bourne [5], with 200 senior IT leaders
in industrial organizations, found that microservices helped

Menghan Wu and Yang Zhang are both first authors and contributed equally
to this work. Xinjun Mao is the corresponding author.

the organization perform well concerning the development
efficiency, the ability to use new platforms, the collaboration
across teams, and sharing of services across applications.

However, the characteristics that lead to the success of
microservices also introduce microservices’ specific issues [6],
e.g., the decentralization of microservice systems asks more
effort to optimize the communication between services [7].
Investigating the challenges and issues in microservice systems
and proposing potential solution strategies are significant since
our observations show that microservice is becoming a hot
topic on Stack Overflow (SO). Specifically, the number of
microservice-related questions and users in SO has expanded
substantially over the last eight years, especially after 20141.
Such analysis can benefit both the academic and industry com-
munities. Researchers can perform studies towards solutions
for the frequently reported problems in the software develop-
ment process of microservice systems, and practitioners can
be allocated to address the most frequent and challenging
problems identified through the empirical study. A few studies
have recently targeted this direction [9], [10], [7]. For example,
Jamshidi et al. [7] discussed the benefits, evolution, and future
challenges of microservices. Yarygina et al. [10] dissected the
problems related to microservice security. Nevertheless, these
efforts target only some specific problems of microservices
and lack in-depth and comprehensive studies on microservice
problems. Furthermore, to our best knowledge, few attempts
so far provide solutions for problems encountered during
microservice practices.

To fill this gap, in this paper, we propose a systematic and
in-depth study to explore the practitioners’ perspectives on
microservice practices by mining posts on SO. We use SO
as a data source because: (i) SO is one of the most popular
question and answer (Q&A) communities and contains a lot
of posts data related to software development [11]; (ii) SO
has been the official discussion platform recommended by
many popular microservice frameworks, e.g., Spring Cloud2.
Our study works with a large-scale investigation of posted
questions, identifying dominant topics and problems reported
by practitioners and exploring preliminary solutions for these

1The distribution of posts has been provided in the replication package [8].
2https://spring.io/community.

432

2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-6654-3786-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SANER53432.2022.00058

problems. In this respect, we conduct an empirical study on
17,522 questions and 22,215 answers collected from SO. We
use Natural Language Processing (NLP) techniques for topic
modeling, statistical analysis for topic characterization, online
survey for topic comprehension, and in-depth discussion for
our findings. We aim to answer the following research ques-
tions:

RQ1: (Microservice Topics) What are the frequent topics
that developers discuss in the software development process of
microservice systems? - RQ1 aims to systematically identify
and taxonomically classify the problems that microservice de-
velopers face. We find that microservice-related posts consist
of 10 categories and 16 topics in 4 phases of the software
development process, and microservice developers encounter
more problems in the governance phase.

RQ2: (Answer Characteristics) What are the answer
efficiency, answer rate, and expertise status of the identified
topics? - RQ2 aims to understand the answer status of different
topics and investigate whether the microservice domain lacks
active experts. We find that there is a lack of microservice
experts, and the current answer status is not optimistic.

RQ3: (Solution Strategies) What are the general solution
strategies for different problem topics? - RQ3 aims to explore
the solution strategies and map them with identified topics,
providing insights about microservice problem solving. At
this RQ, we distill 47 general solution strategies for 14
microservice-related problems.

To summarize, our paper makes the following contributions:
• We develop the first taxonomy of microservice-related

topics based on the software development process to the
best of our knowledge.

• We perform a mixed-method study to shed light on
characteristics of microservice-related topics and practi-
tioners’ experiences with microservices by quantitative
analysis and survey.

• We distill a refined list of solution strategies for identified
problems of microservices, which can be adopted to
facilitate manual and automated solving of microservice-
related problems.

• We provide practical implications of our findings for
three kinds of potential users: researchers, developers, and
service/tool builders.

• We publicly release a replication package [8] to enable
researchers and practitioners to access all collected data
and replicate and validate our study.

II. PRELIMINARIES

A. Microservice Characteristics

MSA, an architectural style derived from practice, has
two typical key characteristics: Decentralization and Auton-
omy [12]. Decentralization means that a large amount of work
in MSA will no longer be managed and controlled by the
center. Autonomy (also considered team autonomy) means
that each development team makes its own decisions about
its software. In more detail, MSA has several characteristics

in practice, e.g., Componentization via Services, Products
not Projects, Smart endpoints and Dumb pipes, Decentralized
Governance, Decentralized Data Management, Infrastructure
Automation, Design for Failure, and Evolutionary Design [2].
It is worth noting that not all of the characteristics can be
implemented in microservice systems.

Componentization via Services is the most apparent char-
acteristic of microservices. The primary way of componen-
tizing MSA software is by breaking it down into services.
These services are external components communicating with a
mechanism such as a web service request or remote procedure
call. When it comes to Products not Projects, MSA prefers
that a team own a product over its entire lifetime instead of
handing it over to a maintenance organization as software.
Microservices introduce a new style of service integration
called Smart endpoints and Dumb pipes instead of using
an ESB (Enterprise Service Bus), with which all the business
logic containing inter-service communication (smart-endpoint)
and all such services are connected to a primitive messag-
ing system (a dump pipe). It aims to achieve lightweight
communication to adapt to high cohesion and low coupling.
The decentralization of MSA is mainly reflected in Decen-
tralized Governance and Decentralized Data Management.
Distributed governance tends to manage its internal state sepa-
rately for each service rather than through central control. For
decentralized data management, microservices prefer polyglot
persistence (e.g., letting each service manage its database,
different instances of the same database technology stack,
or entirely different database technology stacks). Design for
Failure is the guarantee for the standard and stable operation
of microservices. It is essential to be able to detect failures
quickly and restore service automatically. Infrastructure Au-
tomation is the requirement of DevOps, which is usually
applied in MSA consisting of automated testing, automated
building, and automated deployment. Evolutionary Design
considers the flexibility, replacement, and upgradeability in ap-
plying both services and technology stacks (e.g., programming
languages, frameworks). For example, developers can change
the technology stacks used by services with another style.

B. Research Questions

Over the last decade, leading software consultancy firms
and product design companies have found that MSA is an
appealing architecture that allows teams and software organi-
zations to be more productive in general [13]. Many previous
studies [9], [14], [7], [10] have concluded that there are over-
whelming differences between microservice systems and tra-
ditional software systems in terms of design, implementation,
test, and deployment. For example, due to the separation ser-
vices and the requirement of inner-communication of services,
microservice systems need more efficient communication to
ensure reliability. It is reflected in the rapid increase of posts
about microservices in the online Q&A community, e.g., Stack
Overflow (SO). Although SO has been successfully used in
studies regarding different domains, such as mobile applica-
tions [15], docker container [16], and web-based communica-

433

tion systems [17], we know relatively little about the existing
problems that microservice developers discussed in the SO
community. The only exception is performed by Bandeira et
al. [18], who presented a preliminary analysis of microservice-
related posts on SO and found 18 and 15 subjects for technical
and conceptual discussions, respectively. However, due to the
limited sample size and preliminary research goals, their works
have not given in-depth and comprehensive insights about
the nature of microservice developers’ problems and their
potential solutions. Therefore, we are motivated to conduct a
systematic and comprehensive study to distill the practitioners’
problems and solutions on microservice practices.

First, we seek to replicate and improve Bandeira et al.’s
work [18] by investigating more SO posts samples. Instead of
dividing the posts into conceptual and technical types, we want
to systematically identify and get the fine-grained taxonomy of
microservice-related topics based on the software development
process. Hence, we devise the first research question to know
more about microservice-related topics:

RQ1: What are the frequent topics that developers discuss
in the software development process of microservice systems?

After identifying the taxonomy of microservice-related top-
ics, we want to investigate the differences of characteristics
towards each topic, e.g., answer efficiency, answer rate, and
expert status. Those characteristics allow us to draw more
profound insights into the challenges of microservice-related
topics. Also, this analysis may help us understand the solving
status and potential reasons for microservice problems. There-
fore, we ask:

RQ2: What are the answer efficiency, answer rate, and
expertise status of the identified topics?

Even though microservices have attracted much attention
from the academic and industry communities, there is a lack
of investigation regarding the available solution strategies for
microservice-related problems on SO. We may extract and
gain some general solution strategies by analyzing the SO
posts, mainly those accepted answers. It can help developers
solve problems effectively and further facilitate the realization
of automatic tools for better microservice systems develop-
ment. Thus we ask:

RQ3: What are the general solution strategies for different
problem topics?

III. METHODOLOGY

A. Data Collection

First, we download all publicly accessed data in SO-
Torrent [19] (as of February 2021). To identify all the
microservice-related topics that developers discussed on SO,
we select all SO questions and their answers.

Tag-based filtering. Similar to approaches in [16], [20],
we develop a set of microservice-related tags T to deter-
mine and extract posts from SO. In this work, T contains
tags ‘micro-service’, ‘microservice’, ‘micro-services’, and ‘mi-

croservices’3. We extract all posts with at least one of such
tags to develop the initial dataset.

Content-based filtering. We find that some microservice-
related posts may not have tags in T , e.g., this post4 describes
a question about the deployment of microservices on Amazon
Web Services (AWS), but only with tags as ‘amazon-web-
services’, ‘kubernetes’, ‘amazon-eks’, and ‘nginx-ingress’.
Besides, developers may assign questions with improper
tags [11]. Therefore, we use keywords (i.e., tags from T)
and perform string matching on each post title and body.
Finally, we collect 17,522 questions with 22,215 answers
by combining the result datasets generated from tag-based
filtering and content-based filtering.

B. Problem Classification

We perform data pre-processing on the collected dataset
above and apply the topic modeling technique to get the
fine-grained topic taxonomy of microservice-related problems.
Each topic in the fine-grained taxonomy represents the prob-
lem in microservice practices. Note that we only consider the
title, body, and answers of each question for topic modeling.

Data pre-processing. First, we remove code snippets,
HTML tags, URLs, and stopwords [16]. Second, to minimize
noise, we use the initial set of NLTK stopwords to build a
list of stopwords specifically for this study by adding generic,
non-microservice-specific, but high-frequency words to the
initial set, e.g., ‘jar’ and ‘bean’ are common words in Java
while they do not give us a clear indication of the current
topics in microservices [16]. Next, we adopt the bigram and
trigram models using Gensim [21] to improve the quality
of text processing [22]. Additionally, we also perform the
lemmatization on the collection of documents by SpaCy [23].
Finally, we remove the words that appear in more than 80%
and less than 2% of the documents to get the corpus [24].

Topic modeling. Following previous studies [16], [25],
we use the Latent Dirichlet Allocation (LDA), which is the
powerful topic modeling technique with the implementation of
LDA provided by Gensim’s LdaMalletModel. LDA finds
topics based on the co-occurrence frequency of the word sets
in the corpus of documents [26]. To choose the best number of
topics (denoted K, which influences the performance and takes
control of the topic granularity) and iteration value (denoted
Ir, which affects classification accuracy) in the LDA model,
we perform a broad ranger of experiments by varying K from
2 to 50 in a step of 1 and Ir with 100, 500, 1,000, and
2,000 respectively. Next, the first two authors test a randomly
selected sample of 50 posts from each topic for different K
values to ensure we choose the best K value. This experiment
finds that K=16 with Ir=2000 provides a sufficiently granular
set of topics for our dataset. Moreover, we set the hyper-
parameter of LDA α=50/K and β=0.01, consistent with the
values used by previous works [27], [16]. In general, this
model only generates a list of 10 phrases as a topic, but it does

3The complete list of our candidate tags can be found in our reproduction
package at [8].

4https://stackoverflow.com/questions/53227358.

434

TABLE I: Summary of findings and implications.

Findings of microservice topics Implications
F.1 We derive a taxonomy of microservice-related discussion consisting
of 4 phases, 10 categories, and 16 topics. Interestingly, microservice
developers encounter more problems in the governance phase rather than
the construction phase.

I.1 Practitioners face diverse challenges when developing microservice
systems. Researchers should conduct more studies to shed light on the
potential reasons. Also, practitioners should seriously pay attention to the
governance phase which is a challenge for developers.

F.2 In the design phase of microservice systems, developers look forward to
obtaining the guidance of best practices or examples for their microservice
design requirements. In particular, the most problems that developers
encounter are related to microservice boundaries (28.71%).

I.2 Both researchers and service providers should summarize more practical
design specifications and detailed instructions to help developers construct
their microservices more easily and quickly. Moreover, researchers should
focus on defining appropriate decomposition boundaries and conditions,
and practitioners should weaken the dependencies between services to help
microservice systems maintain the low coupling characteristic.

F.3 The communication, failure tolerance, and data management cover the
challenges appearing in the construction phase. The majority (11.71%) of
these challenges are thrown with Communication. Although microservices
encourage technology diversity, developers do not have a definite standard
for the current selection of these technologies.

I.3 Researchers and service providers should deliver more supported
techniques for topics (i.e., web interaction, inner-communication, exception
handling, and data management). Developers should use more sophisticated
tools to manage and analyze logs to recover from failures, e.g., the data
formatting error.

F.4 The delivery of microservice (e.g., testing, building, deployment) is a
challenge for developers, especially in the management and configuration
of diversified CI/CD tools or services. During the testing, the most
frequent problems that developers face are related to project environment
management, versioning control, mocking, and CI/CD.

I.4 It is still challenging for developers to adopt DevOps effectively in
microservice practices. Therefore, how to manage and help developers
configure the best delivery pipeline needs to be addressed. Also, service
/ tool providers should simplify the configuration complexity to lower the
initiation obstacles for more inexperienced developers.

F.5 Microservice Governance has emerged as the most problematic and
essential phase. Managing and monitoring common resources shared by
microservices (e.g., API-gateway, component application, authorization and
authentication, and logging) has been a critical problem that developers
seek to solve.

I.5 These results confirm that microservice systems have many manage-
ment problems and gain a large attack surface. Researchers and practition-
ers should propose design techniques focusing on highly resilient and low
coupled microservice systems, and develop effective solutions to trace and
monitor vulnerabilities and related risks. For instance, researchers should
investigate the historical logs and exceptions to distill the factors that affect
microservices’ reliability and security.

Findings of answer characteristics Implications
F.6 Compared to other SE discussion domains, there is a lack of experts
in Microservices, and only a small percentage of the problems have been
resolved (less than 25%).

I.6 Microservices are hard for newcomers. The SO community should
propose incentives to encourage microservice experts to contribute. Be-
sides, microservices have accumulated a lot of unresolved problems. Our
finding motivates more researchers and experienced developers to explore
the microservice-related problems discussed by practitioners and solutions
for these problems in microservices.

F.7 There are fewer answers and experts in the design phase than in other
phases. In those microservice-related topics, questions about Containers
topic have the highest expertise value and faster response time, while
questions about Spring Cloud Components topic need more experts to
participate in discussions.

I.7 Researchers should further evaluate the characteristics differences of
microservice-related topics in other dimensions (e.g., trends and partici-
pants) and explore their potential reasons between these complex topics.
Also, developers and service/tool providers should pay more attention to
those phases and topics with longer response times, fewer answers, or
fewer experts.

Findings of solution strategies Implications
F.8 We distill 47 general solution strategies for 14 problems in the
microservice-related topic taxonomy. However, there is no silver bullet
for fixing arbitrary phases of microservice-related problems.

I.8 Researchers may facilitate automated resolution via embedding more
prior-experience rules (including the strategies in our study) or mining
more cases from big data to expand solution strategies.

not output actual meaningful and representative topic names.
To label topics, following previous work [16], we inspect the
top 10 posts and read through the most relevant 15 posts for
each topic.

Manual classifying. First two authors analyze and conclude
the topics from the topic modeling results to determine the
taxonomy of microservice topics. First, each topic is classified
into categories and phases by authors’ experience and referring
literature [3], [28], [29]. Next, we use Cohen’s Kappa (κ) [30]
to calculate the inter-rater agreement in manual classification.
The value of the inter-rater agreement is more than 97%
by iterative discussions, promoting the perfect agreement and
rationality of classification. Finally, we get the fine-grained
taxonomy of microservice-related topics.

C. Quantitative Analysis

To have a deeper understanding of the answer characteristics
of the topics, we use resp time (the duration from when
the question is raised to when the answer is proposed, in

minutes) to measure the answer efficiency following [20], we
use % acc.answer (ratio of posts having accepted answers per
topic) and % answer (ratio of posts having any answer per
topic) to measure the answer rate following [16]. Besides,
we also provide % avg.postAge (days of the post’s age)
in order to mitigate its impact on the % acc.answer and
% answer. Following Tian et al.’s work [31], we use the metric
ExpertiseValue to measure the expert status, which considers
user attributes (e.g., user reputation), quality of the answered
questions, profile view count, tags, and post characteristics.

In addition, we compare the microservices with the other
three baseline samples (i.e., Docker, Web, and SO community)
to gain a clear profile of microservices on SO. Docker and
Web are two popular discussion domains of SO [11], [16].
Docker plays an essential role in microservice practices, and
Web is the main application scenario of microservices. By
comparing with those baselines, we can gain insights about
how microservice practices differ from other domains within
the SO community. The samples of these baselines have been

435

generated by tag-based selecting for Docker and Web posts.
We also select the overall SO dataset for the samples of SO
community. This processing allows us to obtain posts that are
strongly correlated with the baselines.

D. Solution Strategies Extraction

We extract the general microservice solution strategies by
manual labeling. Each post in the dataset may cover some
information describing (i) the problem in microservice prac-
tices, (ii) the potential reason for this problem, and (iii) the
solution provided by the SO community. In this paper, we
extract the most general solutions from 6,013 accepted answers
in our dataset as the accepted answers are verified solutions
in the questioners’ problems. To facilitate the manual labeling
process, we apply LDA again for all accepted answers, as
that the automated method such as LDA could extract the
keywords and obtain solution groups instead of random and
accidental manual sampling. Next, first two authors read all
the answer topics (solution groups) and assign each topic with
a short but descriptive phrase as initial codes. Then, they group
similar codes into categories and phases. The grouping process
is iterative, in which they continuously go back and forth
between the results and posts to refine the answer taxonomy.
When there is no agreement between the two authors, another
annotator (the third author) is introduced to discuss and resolve
the conflicts. They follow this procedure until they reach an
agreement on all answer topics. Finally, we get a refined list
of solution strategies for each problem in answer taxonomy
by manual summarizing similar solutions in answer topics.

E. Survey

To obtain additional insights into the microservice practices,
we conduct a survey with a sample of industry developers.
The survey5 is organized into three parts: (i) basic information
about respondents, (ii) taxonomy details of the microservice
topics, and (iii) key observations’ overview in this paper. Due
to the developers are overlapped in GitHub and SO [32], we
identified those developers who also use SO, sampled 200
of them, and sent them email invitation with a link to the
online form. Within 10 days, we receive 26 responses, for a
response rate of 13% which is consistent with other software
engineering online surveys [33], [34]. Respondents indicate
that their experience in the industry was 7.10 years on average
(median: 8; range 1—13), while their microservice experience
was 3.07 years on average (median: 3; range 1—9).

IV. RESULTS

A. RQ1: Taxonomy of Microservice-related Topics

Fig. 1 provides a fine-grained taxonomy of microservice-
related topics. This taxonomy defines the topics as the results
from the LDA model, the categories and phases as high-level
topics’ recapitulation. We present 16 topics of 10 categories in
4 phases and 53 frequent examples in the corresponding topics.
Our survey result shows that more than 92% of respondents

5Our survey questions can be found in our reproduction package at [8].

are satisfied with our phase division (i.e., Microservice Design,
Microservice Construction, Microservice Delivery, Microser-
vice Governance), and nearly 85% of respondents are satisfied
with detailed topic classification. We add up the percentages
of topics in each phase to explore the numerical characteristics
of different phases.

Moreover, we find that developers ask the most questions
in the Microservice Governance phase (32.96%), followed by
Microservice Construction (29.25%), Microservice Delivery
(28.52%), and Microservice Design (12.24%). The topic of
the most interest to developers is Service Management topic,
which plays a vital role in MSA. These indicate that microser-
vice developers concern more about Microservice Governance
instead of Microservice Construction. The broad taxonomy
overview is summarized by Finding F.1 and Implication I.1
in Table I.

In the following, we explain problems represented by cate-
gories along with their constituent topics and examples. Note
that due to the limit of pages, we only focus on those topics
that characterize microservices and will not introduce the
topics that have emerged in other domains.

1) Microservice Design (12.24%): Developers usually dis-
cuss design strategies of microservices at the beginning of
development [35]. The design process is critical to realizing
the microservice systems [36]. We find that the most ques-
tions asked in this phase are about microservice boundaries
(nearly 28.71%). A bounded context defines the boundary and
granularity of the services, which is a crucial requirement of
migrating towards microservice architecture [37], [38]. For
instance, one developer asked the question6: when “defining
Microservice boundaries”, and “...how would you design your
micro-service if you need aggregated outputs?” was the spe-
cific requirement with which he/she was confused.

Most of our survey respondents (90%) stated that they
sought to guide best practices or examples when designing mi-
croservice systems. One respondent reminds us that microser-
vices lose their original purpose of low aggregation due to the
complex invocation relationships between services. Therefore,
to maintain the low coupling characteristic of microservice
systems, defining appropriate decomposition boundaries and
conditions for microservices and weakening the dependencies
between modules are issues that academia and industry should
focus on.

The analysis of topics in the design phase is summarized
by Finding F.2 and Implication I.2 in Table I.

2) Microservice Construction (29.25%): We observe three
categories, i.e., Microservice Communication, Failure Toler-
ance, and Microservice Data Management.

Microservice Communication (11.71%): Due to microser-
vice decentralization, microservice communication is quietly
important for componentization via services and smart end-
points and dumb pipes. Problems with communication are dif-
ficult for microservice developers [6]. Under our observation,

6https://stackoverflow.com/questions/62001909.

436

Project management and
comprehension tool
Sharing in repository

Distributed tracing

Project Building
(4.14%)

Microservice architecture application management

Logs for microservice applications

Monitoring environment configuration

Observability/logging
(5.96%)

Service Management
(18.79%)

Health check

 Life cycle events management

Container resource management
Database Connection Pooling

Resource Management
(6.19%)

API-Gateway for microservices
communication
API development simplification

API Governance
(4.94%)

Inner-Communication
(7.39%)

Synchronous communication
Asynchronous communication

API for application deployment

Front-end development

Web Interaction
(4.32%)

Basic web application construction
Front-end communication with data

CI/CD

Testing when Deployment
(4.64%)

Project environment management
Versioning control
Mocking

Multiple service instances per host
Service instance per host pattern
Serverless deployment

Deployment Pattern
(4.18%)

Spring application custom exception handling

Data formatting handling

Errors in microservice application configuration

Errors in database operation

Module and library management

Exception Handling
(8.32%)

Docker environments
Docker compose

Connections of dockers
Docker building

Containers
(5.55%)

Web Application Deployment
(1.41%)

APIs in application
Deployment on the cloud

Intelligent Routing (Zuul)
Circuit Breaker (Hystrix)

Jhipster

Service Discovery(Eureka) and
Load Balancing(Ribbon)

Spring Cloud Config

Spring Cloud Components
(7.66%)

Data integrity
Database

Data Management
(9.22%)

Project Building
(4.14%)

Project Deployment
(17.04%)

Authorization and Authentication
(8.21%)

Secure login authentication
User authorization
Implication tools

Microservice Testing
(4.64%)

Microservice Design
(12.24%)

Microservice Communication
(11.71%)

Microservice Data Management
(9.22%)

Failure Tolerance
(8.32%)

Microservice monitoring
(5.96%)

Data Design
Microservice Boundaries

APIs and events to communicate
between services.

 Logic architecture design

Design Strategy
(12.24%)

Examples

Phase

Topic

Categories

Taxonomy Legend

Microservice

Microservice Security
(8.21%)

Deployment with K8S
Traffic Management

Deployment platforms
(5.90%)

Health check

Fig. 1: The taxonomy of microservice-related topics.

there are two topics (i.e., Inner-communication and Web Inter-
action) in the Microservice Communication category. Particu-
larly, inner-communication has synchronous and asynchronous
approaches available. In asynchronous communication, devel-
opers are more concerned about stream processing technolo-
gies and application integration approaches (e.g., message-
driven approach and event-driven approach). For instance, this
question7 asked “Getting response for user-initiated action
from microservices with asynchronous communication.” to get
an actual implementation of asynchronous communication. In
our survey, 73.1% of respondents confirmed that communica-
tion had been the major challenge in the construction phase.

Failure Tolerance (8.32%): Failure tolerance is necessary
for the decentralization and autonomy of microservices. Sys-
tems may fail at any time, which makes detecting the failures
quickly and restoring service automatically a challenge for
microservices [39]. That would put a lot of emphasis on real-
time monitoring of the application to achieve observability
and resilience of microservice systems. We find that ques-
tions on this topic include several types of error. Among
these errors, data formatting error is the most (38.09%). This
error often shows its symptom via logs. For example, this

7https://stackoverflow.com/questions/50070895.

question8“Spring RestTemplate sends empty string as null?”
described a data formatting error reflected in logs.

Data Management (9.22%): Microservices favor decen-
tralization in all aspects, including how data is persisted.
Maintaining data consistency across microservices is one of
the challenges under this background. Moreover, hiding data
implementation details may be a criterion of data management,
aiming to interact with other architecture components. For
instance, this question9 about “Event Sourcing in occasionally
connected systems: what if there are two servers?” described
event sourcing as an approach for data integration.

Based on our observations and summaries of construction
questions, we find that many microservice construction tech-
niques and approaches have emerged (Microservices encour-
age technology diversity [40]). However, developers do not
have a definite standard for the current selection of these
approaches. Moreover, our survey confirms that the commu-
nication is the most critical concern for current developers.

The analysis of topics in the construction phase is summa-
rized by Finding F.3 and Implication I.3 in Table I.

8https://stackoverflow.com/questions/63338042.
9https://stackoverflow.com/questions/41297568.

437

3) Microservice Delivery (25.82%): We observe three cat-
egories, i.e., Microservice Testing (4.64%), Project Building
(4.14%), and Project Deployment (17.40%).

We find Project Deployment category has more problems
than other categories. Without an excellent continuous inte-
gration and continuous delivery (CI/CD) process, develop-
ers cannot achieve the agility that microservices promise.
Mendonça et al. [36] showed that CD usage was challenging in
developing self-adaptive microservice systems. In other words,
developers concern about the practice of the best delivery
pipeline. Primarily, we observe that developers ask questions
about three deployment patterns: multiple services per host,
service instance per host, or serverless deployment. For in-
stance, serverless deployment uses a deployment infrastructure
that hides any concept of servers. This question10 asked
about “Boilerplate for independently deployable microservices
based on Serverless framework” for serverless deployment
implementation.

In our survey, 69.23% of respondents agreed that the
management and configuration of diversified CI/CD tools or
services would produce more problems. In particular, one
respondent told us, “...in order to deploy, we need to know
a lot about the new technologies such us Docker”, but “how
we could have everything with DevOps like as automation of
the deploy and the tests” is currently the main pain point.
Our survey shows that the Testing topic has been a primary
concern of developers, followed by Containers, Deployment
patterns, and Web application deployment. Researchers and
tool supporters should mainly focus on the complexity and
flexibility of microservice delivery.

The analysis of topics in the delivery phase is summarized
by Finding F.4 and Implication I.4 in Table I.

4) Microservice Governance (32.96%): In our taxonomy,
this phase is the most prominent phase, including the cate-
gories (i.e., Service Management, Microservice Security, and
Microservice Monitoring).

Service Management (18.79%): The service management
techniques are centrally applied to microservice systems.
These techniques include service registry and discovery, how
to control the services resource, etc. We observe that most
of these capabilities are implemented as part of API manage-
ment, resource management, or applying with spring cloud
components.

Specifically, the first topic API Governance (4.94%) is
applying common rules relating to API standards and security
policies for APIs. Managing service APIs and API ecosystems
has been an emerging challenge and has drawn attention from
developers [41]. For example, the API management layer or
API gateway is used to expose microservices to the consumers.
This question11 about “Is aws lambda can expose only one
spring boot api” described the developers’ problem when
using the API-Gateway.

10https://stackoverflow.com/questions/65119342.
11https://stackoverflow.com/questions/52208226.

The second topic is related to Resource Management
(6.19%). Resource management can help systems reach
reusability and improve systems’ overall efficiency [42].
As the following example12 “Kubernetes pods restart issue
anomaly” showed, developers were confused about getting
resources like CPU and Memory under control.

The last topic is Spring Cloud Components (7.66%). They
are tools that allow developers to build common usage patterns
for a distributed system. Among these, Spring Cloud Netflix
(a mature solution for Spring Cloud Components) provides
Netflix OSS integrations for spring boot applications, aiming at
solving the distributed-system problems at a scalable level for
microservice governance. For example, this developer asked
the question13 “Have Zuul edge service automatically use
microservice’s basic auth credentials” for determining the
actual function of each component.

Microservice Security (8.21%): Microservice security is
often considered to promote the reliability and stability of mi-
croservice systems. It is a multi-faceted problem that requires
a layered security solution that is not available out of the
box at the moment [10]. Under our observation, developers
pay attention to problems about securing service-to-service
communication such as authorization and authentication. For
example, the question14 about “How to implement OAuth2
‘Token Exchange’ with Spring Cloud Security” presented the
difficulty of OAuth2 protocol usages about securing service-
to-service communication.

Microservice Monitoring (5.96%): Observability in the
governance phase is reflected in microservice monitoring.
It aims to provide data on the behavior of systems. The
robustness of the logging and monitoring framework is one of
the main criteria for mature microservice practices [42]. For
example, logging can be a mechanism to retrospect the failed
projects and learn from system mistakes for microservice
teams. This question15 about “Best practices for LOGGING
in microservice architecture” described the logging approach
for microservice monitoring. One of our respondents pointed
that “logging is important in terms of something bad happens
... it helps with parameters to replicate the issue in local and
debug.”

The analysis of topics in the governance phase is summa-
rized by Finding F.5 and Implication I.5 in Table I.

B. RQ2: Answer Characteristics Comparison.

Table II summarizes characteristics metrics on Microser-
vices and other SE domains. It also presents the same metrics
in different phases and topics corresponding to the taxonomy
in section IV-A.

1) SE Discussion Domain Comparison: Based on Table II,
it is more challenging for developers to solve problems related
to Microservices than other SE discussion domains. The value
of % acc.answer is less than 30%. While in SO, it is over 50%.

12https://stackoverflow.com/questions/51474223.
13https://stackoverflow.com/questions/48215910.
14https://stackoverflow.com/questions/34905628.
15https://stackoverflow.com/questions/56533725.

438

TABLE II: The metrics of different topics.
Name resp time %acc.answer %answer %avg.postAge ExpertiseValue
Phase: Microservice Design 272 16.21 34.74 1,384.57 3,572.69
Design Strategy 272 16.21 34.74 1,384.57 3,572.69
Phase: Microservice Construction 336 25.52 53.97 1,102.18 5,264.47
Data Management 418 22.87 51.84 1,121.34 4,523.20
Exception handling 191 32.76 62.30 1,070.49 6,659.58
Communication 452 26.85 55.86 1,066.09 6,747.65
Web Interaction 285 19.58 45.89 1,184.51 3,127.48
Phase: Microservice Delivery 400 25.72 54.77 1,131.20 4,903.32
Testing when Deployment 324 23.92 52.58 1,116.47 6,448.34
Project Building 508 25.43 56.45 1,145.27 3,212.14
Deployment Platforms 564 28.82 59.00 1,015.63 3,473.52
Containers 160 27.55 57.91 1,170.82 7,815.64
Deployment Pattern 443 23.95 49.14 1,236.59 5,502.62
Web Application Deployment 409 24.65 53.54 1,143.47 2,967.68
Phase: Microservice Governance 549 23.81 52.78 1,125.44 3,943.40
Authorization and Authentication 705 22.12 52.46 1,094.82 3,268.31
Resource Management 340 22.89 51.97 1,137.58 6,513.34
API Governance 580 19.24 45.11 1,064.47 3,583.87
Spring Cloud Components 773 25.34 56.10 1,201.24 1,970.04
Observability/logging 351 29.45 58.27 1,101.12 4,381.46
Microservice 442 24.48 52.70 1,144.43 4,606.81
Docker 350 40.36 77.64 - 11,098.79
Web [43], [16] 19 52.00 80.51 - 13,864.53
SO Community [44], [16] 35 51.97 60.89 - 6,129.21

Compared with others, Microservices has a smaller Expertise-
Value. Therefore, it is evident that Microservices has a much
lower number of experts than other SE discussion domains,
which is also verified in our survey, i.e., 65.4% of repondents
agreed that the current microservice community lacks experts.
There have been many successful microservice practitioners in
current practices, but general guidance and practical solution
strategies are lacking. Researchers should use the successful
practices as prior knowledge, summarize solution strategies
and develop tools to promote the development of microservice
systems.

2) Phase Comparison: We find that the Microservice Gov-
ernance phase has a long response time in terms of accepted
answers (549 minutes). The Microservice design phase has
a lower percentage of answers (accepted answers) that they
receive than other phases’. They also have the lowest expertise
value among all phases, which can be interpreted as a difficulty
for developers. In particular, the Spring Cloud Components
topic has the longest time (773 minutes) to receive an accepted
answer. In addition, it has the lowest expertise value, which
can be inferred as a challenging topic. Our survey respondents
(73.1%) also reported that this topic needs more experts to
participate in the discussion. On the other hand, the Containers
topic has the shortest response time (160 minutes) and the
highest expertise value. Although the Exception Handling
topic has the highest number of answers, its accepted an-
swers are still less than 33%. This evidence indicates that
microservice-related topics of all phases are complex.

For RQ2, the analysis is summarized by Finding F.6 F.7
and Implication I.6 I.7 in Table I.

C. RQ3: Solution Strategies Exploration.

Table III illustrates the general solution strategies for differ-
ent problems. The columns “Phase” and “Category” (part of)
are consistent with our taxonomy in Fig. 1, also providing
the percentages of solution categories in parentheses; the
column “Problem” corresponds to the problems (examples)
of topics found in RQ1; and the last column “Solution Strat-
egy” briefly describes the general solution strategies. In our

study, we observe two kinds of solution strategies: high-level
instructions (e.g., asynchronous communicating by message-
based mechanisms), most of which are also mentioned in
other literature, it focuses on answering the overall challenges
of microservice practices (e.g., technologies and ideas); and
general solution patterns (e.g., changing port path), it focuses
on answering specific questions in different phases.

Overall, we distill 47 general solution strategies, includ-
ing 25 high-level instructions and 22 general solution pat-
terns for 14 problems, accounting for 93.75% of topics in
the microservice-related answer taxonomy. We observe the
similarity of solution strategies between different problems,
confirming that solving microservice-related problems is a
challenge. Also, we find that most categories do not have a
general solution pattern. One reason is that developers can only
answer parts of the questions, most of which are high-level
instructions and applied in other SE fields. Moreover, high-
level instructions need more up-to-date knowledge on third-
party resources and should be considered case by case.

The construction phase has the most solutions (i.e., 34.06%,
not including Error Handling) while the design phase has
the least solutions (i.e., 11.25%). It is consistent with the
notion that developers spend more time on the construction
phase [53]. Note that, due to the space limitations, we only
explain general solution patterns in detail16.

1) Architecture Design: We identify 9 frequent solution
strategies (all of them are high-level instructions) for Archi-
tecture Design problems. We find that the requirements of
MSA vary in different scenes, and most questions need to
be solved case by case. Also, those solution strategies have
been proposed in the reference papers in Table III.

2) Microservice Construction: We identify 13 frequent
solution strategies (including 7 high-level instructions and
6 general solution patterns) for Microservice Construction
problems. According to our statistics, 25.64% of solution
strategies are related to Inner-service Communication. For
example, we observe that some questions about asynchronous
request-response are solved by adding extra knowledge, such
as logs in Data Formatting. Developers on SO often paste logs
for additional data to help the askers avoid keeping a local state
during the communication. This answer17 presented a solution
that uses logs as extra response information to avoid infinite
loops when communicating.

3) Microservice Deployment: We identify 17 frequent so-
lution strategies (including 9 high-level instructions and 8 gen-
eral solution patterns) for Microservice Deployment problems.

As the observation in section IV-A, Docker is widely
used in microservice systems, and the problems about this
topic are heatedly discussed. After the authors check and
conclude, there are several solutions (i.e., updating the ver-
sion of corresponding components, changing the port path,
configuring docker composing, and changing the details of

16The answer examples and detailed discussion of each solution strategy
can be accessed in our replication package [8].

17https://stackoverflow.com/questions/50625038/console-print-statement-
not-working-in-junit-test-in-spring-boot-microservice/50625222#50625222.

439

TABLE III: Solution strategies for microservices-related problems.

Phase Category Problem Solution Strategy

Architecture Design
(11.25%)

Microservice Design
(11.25%) Design Strategy

Decentralizing application:
¬ by scale [45],
 by domain [29]
Designing database architecture by [46]:
¬ Approach with a shared database,
 Approach with a domain-based database
Organizing microservice teams [47]:
¬ CI/CD
 Automated Testing
Communicating between internal services [3]:
¬ Synchronous message-passing pattern,
 Asynchronous Message-passing pattern,
® Asynchronous Event-driven pattern

Microservice Construction
(40.23%)

Microservice Data
Management (8.42%) Distributed Data Management

Managing data with the combination of event sourcing
and CQRS [28]
Managing data with a single database per microservice
(not per instance) [47] [45]
Storing data by transaction reliability pattern
and processing [28]

Inner-service
Communication (25.64%)

Asynchronous Communication

Asynchronous communicating by message-based
mechanisms [48]
Applying message brokers: Kafka, RabbitMQ, and Redis. [49]
Communicating with forms [50]:
¬ Publish and subscribe (Topics) approach
 Point-to-point (Queues) approach

Data Formatting
Defining decoder function
Defining response, request, or header
Using Extra knowledge such as logs

Synchronous Communication
Rewriting call method
Changing parameters
Applying healthy check

Failure Tolerance (6.17%) Error Handling
Resource Management
CS Connection
API Governance

Microservice Deployment
(28.89%)

Building (7.67%) Microservice Project Building [13]
Building with Maven
Building with Gradle
Adopting popular application framework: Spring framework

Deploying (21.22%)

Deployment to Kubernet

Exposing services with Istio [51]
Orchestrating services by [47]:
¬ Kubernetes,
 Docker swarm

Docker

Updating the version of corresponding components
Changing the port path
Configuring docker composing
Changing the details of configuration files

Spring Application Referring to the spring official documentation and GitHub issues
Referring to GitHub examples

Application Hosting

Referring to the official documentation
Referring to GitHub examples
Hosting application by [52]:
¬ Amazon Web Services (AWS),
 Google Cloud,

Microservice Governance
(19.63%)

Service Management
(12.52%)

Spring Cloud Netflix
Referring to Spring official documentation and GitHub issues
Changing configuration files
Referring to GitHub examples

API-Governance Referring to GitHub examples
Formatting data style

Microservice Security
(7.11%) Authentication and Authorization

Adopting OAuth and JWT (JSON Web Token) [28]
Authenticating with password-based approach [28]
Performing security with a popular framework [3]:
¬ Spring cloud gateway,
 Spring security

configuration files) are available to address those problems,
especially for docker configuration. For example, this answer18

suggested that developers change configuration files to open up
the connection between dockers. Furthermore, some solution
strategies are non-intuitive, and developers are confused by
specific applications in microservice deployment. Particularly,
as Table III shows, we find that some solution patterns
about problems in this phase are mainly about referring to
GitHub examples and official documentation. For example,

18https://stackoverflow.com/questions/56501428/connect-to-a-service-on-a-
different-stack-from-docker-compose/56523538#56523538.

this answer19 advised developers to refer to GitHub examples.
4) Microservice Governance: We identify 9 frequent solu-

tion strategies (including 4 high-level instructions and 5 gen-
eral solution patterns) for Microservice Governance problems.

Microservice governance runs through the critical phases in
the software development process of microservice systems. It
is an essential guarantee for the correct and stable operation
of microservice systems. However, according to our statistics,
current solutions about the governance phase are not accurate

19https://stackoverflow.com/questions/66974806/github-actions-gke-
workflow-deployment-clarification/67023631#67023631.

440

and detailed. Answers from SO show that spring cloud netflix
is the most popular framework used for microservice gover-
nance. It has many accepted answers about service register
and discovery, which indicates that the starting point (service
register and discovery) is crucial for successfully building of
microservice applications.

Additionally, we observe some questions about Spring
Cloud Components and Spring Applications are solved by
referring to GitHub examples or official documentation. In
addition, correcting configuration files is another choice for
these problems. As Table III shows, we find that the current
solutions are primarily about referring to tutorials. It indicates
that learning costs are high in microservices. At the early stage
of microservices, developers should learn the concepts and
corresponding tools to prevent misuse [54].

For RQ3, the analysis is summarized by Finding F.8 and
Implication I.8 in Table I.

V. THREATS TO VALIDITY

Internal validity: Threats to internal validity are related to
experimenter bias and errors. Our study applies qualitative
analysis in RQ1 and RQ3. To reduce the bias and errors, we
make every data item that needs to be marked by at least
two authors working together with a third annotator resolving
the conflicts and inspecting all results. We use Cohen’s kappa
as an indicator of author agreement of more than 97%, to
reduce the possible subjectiveness. During the experiment, we
observe that the LDA model has randomness. To solve this
problem, we select the best random number seed when tuning
the parameters (e.g., iterations, best topic number), with which
we can train our model on a fixed path. This method can
reduce the impact of randomness brought by the LDA model
and promote the best results.

External validity: Threats to external validity are related to
the generalization of our study. In this study, we concentrate
on microservice-related posts in SO as the data source. Data
bias caused by a single data source cannot guarantee the
generalizability of our observations. In the future, we plan to
extend our study in more data sources (e.g., GitHub). In terms
of qualitative analysis, we rely heavily on manual analyzing.
Due to the sheer volume of our data, we selected 1,000 posts
and 750 accepted answers as representative data for manual
analysis after LDA, giving us a confidence level of 95% and
a confidence interval of 5%.

VI. RELATED WORK

Recently, there have been various investigations on mi-
croservice practices. Indrasiri et al. [28] provided a com-
prehensive understanding of MSA principles and usage in
practices. Yarygina et al. [10] studied microservices security’s
taxonomy and described the design and implementation of a
simple security framework for microservices. These studies
proposed some MSA based on specific application scenarios.
Considering the increasing popularity of microservices, our
work seeks to identify the current challenges and makes the

first step to investigate their solutions from the online Q&A
community with a large scale of development discussions.

Several researchers have studied the history, benefits, and
future challenges of microservices by presenting system-
atic mapping studies from the literature [55]. Soldani et
al. [56] systematically analyze the industrial grey literature
on microservices to identify benefits and issues related to
microservice-based architectures. For example, Francesco et
al. [57] contributed with a classification framework for re-
search studies on architecting with microservices and dis-
cussed emerging findings and implications for future research.
Hassan et al. [58] better understood the transition to mi-
croservices, reviewed modeling approaches, and processed
used to reason about microservice granularity. They analyzed
the current microservice state and provided the classification
of microservices to illustrate the existed challenges. Unlike
previous work, our study focuses on the current practices
and challenges of the microservice practitioners’ experience
as long as current solutions summarized by authors.

Some other researchers also investigated the microservice
systems in practice by using questionnaires or interviews.
Xiang et al. [39] identified 11 practical issues that constrained
the microservice capabilities of organizations and summarized
the practices that had been explored and adopted by the
industry, along with the remaining challenges. Wang et al. [42]
collected and categorized best practices, challenges, and some
existing solutions by interviews with practitioners that have
successfully developed microservice-based applications for
commercial use. Our work can be considered a complement,
i.e., we explore the microservice-related problems and poten-
tial solutions by mining the questions posted on SO.

VII. CONCLUSION

In this work, we perform an empirical study of 17,522
microservice-related posts on SO to explore the practitioners’
perspectives on microservice practices. Using LDA model-
ing and manual analysis, we develop the first taxonomy of
microservice-related topics based on the software development
process, including 4 phases, 10 categories, and 16 topics.
Next, we investigate the characteristics of answers (i.e., answer
efficiency, answer rate, and expertise status) and find that there
is a lack of microservice experts, and the current answer status
is not optimistic (less than 25%). Furthermore, we perform
manual analysis on 6,013 answers accepted by developers
and distill 47 general solution strategies for 14 microservice-
related problems, out of which 22 are proposed for the first
time. Based on our quantitative analysis and online survey, we
also distill many implications for different stakeholders.

ACKNOWLEDGMENT

The authors greatly thank the 26 survey respondents for
their valuable answers and the anonymous reviewers for their
constructive comments. This work was supported in part by the
National Key Research and Development Program of China
under Grant 2018YFB1004202 and in part by the Laboratory
of Software Engineering for Complex Systems.

441

REFERENCES

[1] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[2] J. Lewis and M. Fowler, “Microservices: a definition of this new
architectural term,” https://martinfowler.com/articles/microservices.html,
last accessed: September 2021.

[3] C. Richardson, “Who is using microservices?”
https://microservices.io/articles/whoisusingmicroservices.html, last
accessed: September 2021.

[4] M. Loukides and S. Swoyer, “Microservices adoption in 2020,”
https://www.oreilly.com/radar/microservices-adoption-in-2020/, last ac-
cessed: September 2021.

[5] V. Bourne, “2020 digital innovation benchmark,” Tech. Rep., 2020,
https://devops.com/survey-sees-massive-adoption-of-microservices/.

[6] M. Waseem, P. Liang, M. Shahin, A. Ahmad, and A. R. Nassab, “On the
nature of issues in five open source microservices systems: An empirical
study,” in Evaluation and Assessment in Software Engineering, 2021, pp.
201–210.

[7] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[8] Replication Package of Submission 151 for SANER 2022. Zenodo,
Oct. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.5574860

[9] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” Present and ulterior software engineering, pp. 195–216, 2017.

[10] T. Yarygina and A. H. Bagge, “Overcoming security challenges in mi-
croservice architectures,” in 2018 IEEE Symposium on Service-Oriented
System Engineering (SOSE). IEEE, 2018, pp. 11–20.

[11] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[12] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. ” O’Reilly
Media, Inc.”, 2016.

[13] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA). IEEE, 2016,
pp. 44–51.

[14] C. Esposito, A. Castiglione, and K.-K. R. Choo, “Challenges in deliv-
ering software in the cloud as microservices,” IEEE Cloud Computing,
vol. 3, no. 5, pp. 10–14, 2016.

[15] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192–1223, 2016.

[16] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in docker
development: A large-scale study using stack overflow,” in Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2020, pp. 1–11.

[17] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, 2014, pp. 112–121.

[18] A. Bandeira, C. A. Medeiros, M. Paixao, and P. H. Maia, “We need
to talk about microservices: An analysis from the discussions on
stackoverflow,” in 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 2019, pp. 255–259.

[19] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “Sotorrent: reconstructing
and analyzing the evolution of stack overflow posts,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018, A. Zaidman,
Y. Kamei, and E. Hill, Eds. ACM, 2018, pp. 319–330. [Online].
Available: https://doi.org/10.1145/3196398.3196430

[20] J. Wen, Z. Chen, Y. Liu, Y. Lou, Y. Ma, G. Huang, X. Jin, and
X. Liu, “An empirical study on challenges of application development
in serverless computing,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 416–428.

[21] R. Rehurek and P. Sojka, “Gensim–python framework for vector space
modelling,” NLP Centre, Faculty of Informatics, Masaryk University,
Brno, Czech Republic, vol. 3, no. 2, 2011.

[22] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software
Engineering, vol. 21, no. 5, pp. 1843–1919, 2016.

[23] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental
parsing,” 2017, to appear.

[24] S. W. Thomas, A. E. Hassan, and D. Blostein, “Mining unstructured
software repositories,” in Evolving Software Systems. Springer, 2014,
pp. 139–162.

[25] M. Openja, B. Adams, and F. Khomh, “Analysis of modern release
engineering topics:–a large-scale study using stackoverflow–,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 104–114.

[26] Z. Wan, X. Xia, and A. E. Hassan, “What do programmers discuss about
blockchain? a case study on the use of balanced lda and the reference
architecture of a domain to capture online discussions about blockchain
platforms across stack exchange communities,” IEEE Transactions on
Software Engineering, vol. 47, no. 7, pp. 1331–1349, 2021.

[27] M. Bagherzadeh and R. Khatchadourian, “Going big: a large-scale study
on what big data developers ask,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 432–
442.

[28] K. Indrasiri and P. Siriwardena, “Microservices for the enterprise,”
Apress, Berkeley, 2018.

[29] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,” Ieee
Software, vol. 33, no. 3, pp. 42–52, 2016.

[30] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[31] Y. Tian, W. Ng, J. Cao, and S. McIntosh, “Geek talents: Who are
the top experts on github and stack overflow?” CMC-COMPUTERS
MATERIALS & CONTINUA, vol. 61, no. 2, pp. 465–479, 2019.

[32] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in 2013 International Conference on Social Computing. IEEE,
2013, pp. 188–195.

[33] G. Gousios, A. Zaidman, M.-A. Storey, and A. v. Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, vol. 1, 2015, pp. 358–368.

[34] Y. Zhang, B. Vasilescu, H. Wang, and V. Filkov, “One size does
not fit all: an empirical study of containerized continuous deployment
workflows,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 295–306.

[35] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: current and future directions,” ACM SIGAPP
Applied Computing Review, vol. 17, no. 4, pp. 29–45, 2018.

[36] N. C. Mendonça, P. Jamshidi, D. Garlan, and C. Pahl, “Developing
self-adaptive microservice systems: Challenges and directions,” IEEE
Software, 2019.

[37] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” in 2018 IEEE International
Conference on Software Architecture (ICSA), 2018, pp. 29–2909.

[38] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and
Z. Shan, “A dataflow-driven approach to identifying microservices from
monolithic applications,” Journal of Systems and Software, vol. 157, p.
110380, 2019.

[39] Q. Xiang, X. Peng, C. He, H. Wang, T. Xie, D. Liu, G. Zhang, and
Y. Cai, “No free lunch: Microservice practices reconsidered in industry,”
2021.

[40] L. Chen, “Microservices: Architecting for continuous delivery and de-
vops,” in 2018 IEEE International Conference on Software Architecture
(ICSA), 2018, pp. 39–397.

[41] U. Zdun, E. Wittern, and P. Leitner, “Emerging trends, challenges, and
experiences in devops and microservice apis,” IEEE Software, vol. 37,
no. 1, pp. 87–91, 2019.

[42] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and challenges of
microservices: an exploratory study,” Empirical Software Engineering,
vol. 26, no. 4, pp. 1–44, 2021.

[43] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu,
“Why is developing machine learning applications challenging? a study
on stack overflow posts,” in 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2019, pp. 1–11.

442

[44] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu, “An
empirical study on deployment faults of deep learning based mobile
applications,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 674–685.

[45] S. V. Zykov, Managing software crisis: a smart way to enterprise agility.
Springer, 2018, vol. 92.

[46] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on
microservices architecture in devops,” Journal of Systems and Software,
vol. 170, p. 110798, 2020.

[47] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving
from monolith to microservice architecture,” in International Conference
on Web Engineering. Springer, 2017, pp. 32–47.

[48] D. Richter, M. Konrad, K. Utecht, and A. Polze, “Highly-available
applications on unreliable infrastructure: Microservice architectures in
practice,” in 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C). IEEE, 2017, pp. 130–
137.

[49] W. K. A. N. Dias and P. Siriwardena, “Microservices security in ac-
tion,” https://otonomo.io/redis-kafka-or-rabbitmq-which-microservices-
message-broker-to-choose/, last accessed: October 2021.

[50] Https://dev.to/tranthanhdeveloper/point-to-point-and-publish-subscribe-
messaging-model-41j0, last accessed: October 2021.

[51] W. K. A. N. Dias and P. Siriwardena, Microservices Security in Action.
Simon and Schuster, 2020.

[52] Https://kinsta.com/blog/google-cloud-vs-aws/. Retrieved on September
15, 2021.

[53] A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a
good day: The daily life of software developers,” IEEE Transactions on
Software Engineering, vol. 47, no. 5, pp. 863–880, 2021.

[54] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.

[55] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A.
Babar, “Understanding and addressing quality attributes of microservices
architecture: A systematic literature review,” Information and Software
Technology, vol. 131, p. 106449, 2021.

[56] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018.

[57] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” Journal of Systems and Software,
vol. 150, pp. 77–97, 2019.

[58] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its
granularity problem: A systematic mapping study,” Software: Practice
and Experience, vol. 50, no. 9, pp. 1651–1681, 2020.

443

