
TECHSUMBOT: A Stack Overflow Answer
Summarization Tool for Technical Query

Chengran Yang, Bowen Xu∗, Jiakun Liu, David Lo
School of Computing and Information Systems, Singapore Management University

{cryang, bowenxu, jkliu, davidlo}@smu.edu.sg

Abstract—Stack Overflow is a popular platform for developers
to seek solutions to programming-related problems. However,
prior studies identified that developers may suffer from the
redundant, useless, and incomplete information retrieved by the
Stack Overflow search engine. To help developers better utilize
the Stack Overflow knowledge, researchers proposed tools to
summarize answers to a Stack Overflow question. However,
existing tools use hand-craft features to assess the usefulness of
each answer sentence and fail to remove semantically redundant
information in the result. Besides, existing tools only focus on
a certain programming language and cannot retrieve up-to-
date new posted knowledge from Stack Overflow. In this paper,
we propose TECHSUMBOT, an automatic answer summary
generation tool for a technical problem. Given a question, TECH-
SUMBOT first retrieves answers using the Stack Overflow search
engine, then TECHSUMBOT 1) ranks each answers sentence
based on the sentence’s usefulness, 2) estimates the centrality
of each sentence to all candidates, and 3) removes the semantic
redundant information. Finally, TECHSUMBOT returns the top 5
ranked answer sentences as the answer summary. We implement
TECHSUMBOT in the form of a search engine website. To evalu-
ate TECHSUMBOT in both automatic and manual manners, we
construct the first Stack Overflow multi-answer summarization
benchmark and design a manual evaluation study to assess
the effectiveness of TECHSUMBOT and state-of-the-art baselines
from the NLP and SE domain. Both results indicate that the
summaries generated by TECHSUMBOT are more diverse, useful,
and similar to the ground truth summaries.

Tool Link: www.techsumbot.com
Video Link: https://youtube.com/watch?v=ozuJOp vILM
Replication Package: https://github.com/TechSumBot/TechSumBot
Index Terms—Summarization, Question Retrieval

I. INTRODUCTION

Nowadays, Stack Overflow hosts a valuable resource for

developers to solve technical problems. As of Nov 2022, Stack

Overflow has around 23 million questions and 34 million

corresponding answers, making Stack Overflow a huge base

for developers to find programming-related knowledge. While

developers rely on Stack Overflow to search for solutions to

their technical problems, prior studies find that developers

suffer from ineffective and time-consuming answer-searching

processes as the Stack Overflow search engines may provide

redundant, useless, and incomplete information [1]. Through

a survey of developers, developers expect an answer summa-

rization tool to provide an answer summary for their technical

problems [1].

∗ Corresponding author

To help developers better capture the knowledge to answer

technical questions, prior studies proposed several tools to

retrieve information from Stack Overflow [1], [2]. More specif-

ically, Xu et al. consider the task as a query-focused extractive

answer summarization process and propose an approach to

perform Stack Overflow answer summarization for a technical

problem [1]. Following their work, Cai et al. implement

an answer summarization tool AnswerBot that can generate

an answer summary from multiple relevant Stack Overflow

answers for a given technical problem [2]. However, existing

approaches [1], [2] use hand-craft features to model the

importance of answer sentences to the query. The handcrafted

features require much human effort to create and update

and are not yet enough to capture the semantics. Moreover,

the generated summaries from existing approaches still can

contain apparent information redundancy. They are weak at

distinguishing and eliminating semantically similar yet syntac-

tically different sentences. Apart from the deficiencies of the

summarization algorithm, we observe that AnswerBot lacks

timeliness, extensibility, and customizability. Considering that

Stack Overflow produces 4.55 answers per minute1, it is

hard to ensure the information timeliness of the local dataset.

Besides, AnswerBot only focused on Java-related problems,

and it might not perform well in other programming-related

problems [2]. Moreover, AnswerBot can not meet the cus-

tomization needs of developers as it does not allow users to

modify the parameters.

To address the aforementioned limitations of the previ-

ous tools, we propose our tool TECHSUMBOT to generate

answer summaries for a technical problem, in which the

summarization algorithm is described in detail in our prior

work [3]. We also implement a web-based search engine that

facilitates using TECHSUMBOT. We present both out-of-the-

box summarization and advanced summarization modes for us-

ing TECHSUMBOT. The out-of-the-box summarization mode

allows users to input their technical problems in the search

box and offer an answer summary extracted from multiple

most relevant answers in Stack Overflow just in a few seconds.

More specifically, TECHSUMBOT adopts the Stack Overflow

built-in search engine to identify relevant answers while a

query is given, which ensures the summarization source is in

sync with Stack Overflow. Then TECHSUMBOT leverages a

three-stage summarization framework to produce an answer

1https://api.stackexchange.com/docs/info#&site=stackoverflow&run=true

132

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00040

http://crossmark.crossref.org/dialog/?doi=10.1109%2FICSE-Companion58688.2023.00040&domain=pdf&date_stamp=2023-07-27

summary. In each summarization module, TECHSUMBOT

performs summarization while taking into consideration 1) the

answer sentence’s usefulness to the query, 2) the centrality of

each sentence to all candidates, and 3) semantic information

redundancy, in turn. In the advanced summarization mode,

TECHSUMBOT allows users to define the summary length and

summarization scope when producing the answer summary.

We perform both automatic and manual evaluation to

explore the effectiveness of TECHSUMBOT. TECHSUMBOT

outperforms state-of-the-art baselines significantly in both au-

tomatic and manual evaluation manner. The manual evaluation

further demonstrates that TECHSUMBOT can produce diverse

and useful answer summaries for a technical problem.

II. APPROACH

We demonstrate the overall workflow of TECHSUMBOT

in Figure 1. TECHSUMBOT takes a technical query as input

and outputs an answer summary from multiple relevant Stack

Overflow answers. It contains three core modules: Usefulness

Ranking, Centrality Estimation, and Redundancy Removal.

Firstly, given a technical query, TECHSUMBOT adopts the

Stack Overflow built-in searching engine to search for its

most relevant answers and decompose them into a list of

sentences. Then Usefulness Ranking module outputs a ranked

list of sentences, which is ordered by the usefulness of

each answer sentence to a specific query. Next, the second

Centrality Estimation module re-rank the sentence list by

measuring the centrality of each sentence among candidates

by TextRank [4]. The third Redundancy Removal module

removes semantically redundant sentences in the ranked list

through a greedy algorithm-based selection mechanism, where

an in-domain sentence representation model is applied. In the

end, the top-5 answer sentences in the final list are used to

form an answer summary to the target technical query.

Fig. 1. Overview of TECHSUMBOT

A. Module I: Usefulness Ranking

In this Usefulness Ranking module, we model the usefulness

of each answer sentence with respect to a technical problem.

We train a BERT-based classifier to predict the usefulness

of each answer sentence to the query. BERT is a powerful

transformer-based language model [5].

We apply a large-scale general-domain QA dataset

ASNQ [6] to fine-tune the BERT-based classifier. Each data in

ASNQ consists of a query and corresponding answer sentence.

For each of the pairs 〈query, sentence〉 in the ASNQ dataset,

we input them into the BERT model. Then we extract the

representation vectors from the BERT output and feed into

the final classification layer. We apply the sigmoid function

to produce the likelihood of the input class (i.e., positive and

negative). we select cross entropy as the loss function.

For the inference stage, we pick the classifier’s predicted

score of positive class as the representation of sentence use-

fulness. Finally, Usefulness Ranking module returns a sentence

list ranked with the usefulness score. A sub-list including the

top k answer sentences with the highest usefulness scores

serves as the input of the next module.

B. Module II: Centrality Estimation

To select summative sentences, we further consider the cen-

trality of each sentence among all candidates. The most central

sentences in a sentence cluster give all the necessary and

sufficient amount of information for the cluster’s main content.

We apply extractive summarization approach TextRank [4]

to extract each sentence’s centrality score. By constructing

a sentence graph, where each node is an answer sentence,

and the weight of each edge is the word similarity between

two nodes, TextRank quantifies the centrality of each sentence

based on the graph’s information. Finally, we re-rank the input

sentence list with the centrality score, which is obtained from

TextRank. We feed the re-ranked list into the final module.

C. Module III: Redundancy Removal

Given a re-ranked sentence list, Redundancy Removal mod-

ule eliminates redundant information by applying the greedy

selection to remove redundant sentences.

1) Greedy Algorithm for Redundancy Removal: Given the

ranked sentence list from the Centrality Estimation module, we

pick each sentence into the final summary one by one. Within

each selection, when the cosine similarity between the current

sentence’s representation and which has been included in the

final summary is above a threshold T , we regard the current

sentence as redundant to the final summary and discard it. At

the end of the greedy selection, we pick the top five sentences

in the sentence list and form them as the final summary.

2) Contrastive Learning for In-domain Sentence Embed-
ding: Note that the essential step of the greedy selection is to

transform each sentence into a vector representation through a

sentence representation model, which enables the calculation

of the cosine similarity between two sentences. Here we

leverage the SE domain language knowledge inferred from a

large-scale SO sentence relationship dataset and propose an in-

domain sentence representation model via contrastive learning.

Contrastive learning-based sentence representation aims to

learn a sentence embedding space, where similar sentence

pairs stay close to each other while dissimilar ones are far apart

in this space [7]. Following SIMCSE [7], the state-of-the-art

sentence representation approach based on contrastive learn-

ing, we use a transformer-based pre-trained model RoBERTa

[8] as the base model and add a multilayer perceptron layer

on the top of it. At the training stage, for each input sentence

triplet, the loss function is defined as:

L = −log esim(ri,r
+
i)/τ

∑N
j=1(e

sim(ri,r
+
j)/τ + esim(ri,r

−
j)/τ)

(1)

133

Fig. 2. Homepage of TECHSUMBOT Website

while ri denotes the representation of each sentence. N is the

length of a mini-batch, τ is a temperature hyperparameter, and

sim(r1, r2) denotes the cosine similarity. We train RoBERTa

model by leveraging an in-domain sentence representation

dataset that is automatically crafted by our prior work [3].

III. IMPLEMENTATION DETAILS

We implement TECHSUMBOT in the form of a search en-

gine website. Figure 2 shows the homepage of TECHSUMBOT.

Developers input the technical queries in the search box of

TECHSUMBOT, then TECHSUMBOT would directly return the

answer summary as well as the links to the corresponding

Stack Overflow answers. Meanwhile, considering the impor-

tance of hyperlinks, TECHSUMBOT allows users to trace the

hyperlinks in answers [9], [10]. For each hyperlink embedded

in the answer sentence, TECHSUMBOT set a flag (i.e., ‘[hyper-

link]’) to remind users to trace the external resources.

TECHSUMBOT provides a guide page to introduce how to

use the two summarization modes as well as several usage

examples. We provide two modes for users: out-of-the-box

summarization, which allows users to experience our tool

without additional configuration. We set the length of the

answer summary as five sentences by default and treat the

top-10 relevant Stack Overflow answers returned by the Stack

Overflow search engine as the summarization source. The

other mode is advanced summarization to meet developers’

customized summarization needs. Compared with the out-of-

the-box summarization mode, TECHSUMBOT offers config-

urable parameters to enable users to modify the length of

generated summaries and the number of relevant sentences. To

narrow down the answer search scope and provide more useful

summaries, TECHSUMBOT also allows users to specify the

relevant programming language of their technical questions.

TECHSUMBOT is based on the Browser/Server architecture.

For each user query, we firstly use the official Stack Exchange

API2 (i.e., Stack Overflow built-in search engine) to search

for the most relevant Stack Overflow answers for that query.

We register the stack exchange API key for more API request

quotas. The Stack Overflow answers as well as the customized

parameters are then fed into the backend service, where we

apply our summarization algorithm to generate an answer

summary. After that, TECHSUMBOT visualize the answer

summary in the web browser. We use the streamlit3 framework

to implement TECHSUMBOT web interface. Streamlit is an

open-source web-based app framework.

IV. EVALUATION

A. Evaluation Setup

Dataset We adopt the Stack Overflow answer summarization

dataset TECHSUMBENCH proposed by our prior work [3] for

the automatic evaluation. This dataset consists of 111 manually

created summaries for 37 technical questions.

Baselines we compare TECHSUMBOT against two extractive

summarization baselines: 1) the state-of-the-art Stack Over-

flow answer summarization approach, AnswerBot [1]; and

2) the state-of-the-art query-focused multi-doc summarization

approaches in the NLP domain, QuerySum [11].

Automatic Evaluation Metric Following the existing ex-

tractive summarization approaches [11], we use ROUGE-N

for automatic evaluation. ROUGE-N is a standard automatic

evaluation metric for summarization systems. It evaluates the

n-gram overlapping between a generated summary and the

ground-truth summaries. ROUGE-N is defined as:

ROUGE-N =

∑

Si∈S

∑

gramn∈Si

Countmatch(gramn)

∑

Si∈S

∑

gramn∈Si

Count(gramn)
(2)

where S denotes the ground-truth summary, n denotes the

number of grams in a summary, Countmatch(gramn) and

gramn denote the number of grams that are coexistence in the

ground-truth summaries and generated summaries. We apply

ROUGE-N to evaluate the quality of generated summaries

against the ground-truth summaries. The higher value of

ROUGE-N, the better performance of an approach is.

Manual Evaluation Setting By following the prior work [1],

we conduct a user study to evaluate all approaches regarding

the usefulness and diversity of their generated summaries.

Five participants are involved in this user study. One is a

postdoctoral fellow, and the others are PhD students. All the

participants have at least three years of developing experience

in Java or Python. We randomly sample ten technical queries

from TECHSUMBENCH as the experiment data. We collect

the answer summaries for each query generated from TECH-

SUMBOT, AnswerBot, and QuerySum. We ask the participants

to give 5-point Likert scores to all summaries in terms of the

diversity and usefulness of the query. “Extremely useless” and

“extremely redundant” denotes as 1. “Extremely useful” and

“extremely diverse” denotes as 5.

2https://api.stackexchange.com/docs/search
3https://streamlit.io/

134

TABLE I
PERFORMANCE OF TECHSUMBOT AND BASELINES

System ROUGE-1 (%) ROUGE-2 (%) ROUGE-L (%)

AnswerBot 0.490 (14.90) 0.276 (36.59) 0.456 (17.54)
QuerySum 0.508 (10.83) 0.284 (32.75) 0.476 (12.61)

TECHSUMBOT 0.563 0.377 0.536

B. Evaluation Result

1) Automatic Evaluation Result: Table I is the automatic

evaluation result for TECHSUMBOT and baselines. TECH-

SUMBOT consistently outperforms AnswerBot and QuerySum

in terms of all evaluation metrics. Compared with Answer-

Bot, TECHSUMBOT achieves better performance in terms of

ROUGE-1, ROUGE-2, and ROUGE-L by 14.90%, 36.59%,

and 17.54%, respectively. Compared with QuerySum, TECH-

SUMBOT outperforms it by 10.83%, 32.75%, and 12.61%, in

terms of ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

TABLE II
USER STUDY RESULT

System Usefulness Diversity

AnswerBot 3.68 3.62
QuerySum 3.80 3.64

TECHSUMBOT 4.02 4.26

2) Manual Evaluation Result: User study result is shown

in Table II. We observe that TECHSUMBOT achieves the best

performance consistently and the improvement is significant

(p¡0.05) in terms of usefulness and diversity. Participants con-

sider TECHSUMBOT to be useful (4.02 out of 5) and diverse

(4.26 out of 5). TECHSUMBOT outperforms AnswerBot and

QuerySum by 9.23% and 5.79% in terms of average usefulness

score and 17.68% and 17.03% in terms of diversity score.

V. RELATED WORK

Many text summarization approaches have been applied to

support developers in better programming and learning. Uddin

et al. [12] proposed Opiner to support developers in making

informative API selection and usage decisions by providing

opinion-based API summaries. Besides, Nadi and Treude [13]

propose an approach to identify the essential sentences in

Stack Overflow. The essential sentences are helpful to navigate

the developers reading Stack Overflow answers efficiently.

Also, Naghshzan et al. [14] proposed a tool to summarize the

discussion about method-level Android API in Stack Overflow.

They apply TextRank to extractive the most informative Stack

Overflow answer sentences to the Android API.

On the other hand, there are many query-focused and multi-

answer summarization extractive summarization approaches in

the NLP community. Traditional summarization approaches,

e.g., LexRank [15], apply the PageRank algorithm to extract

the most representative sentences from a sentence graph. Xu

et al. [11] proposed a coarse-to-fine framework to filter out

the irrelevant information during the summarization.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present TECHSUMBOT, an answer sum-

marization generation tool, which generates answer summaries
from Stack Overflow for technical queries. TECHSUMBOT

enables users to obtain the answer summaries out-of-the-box.

Users can further modify the summarization conditions via

advanced summarization mode. TECHSUMBOT outperforms

state-of-the-art summarization baselines from NLP and SE

domains in both automatic evaluation and manual evaluation.

Furthermore, participants of the manual evaluation agree that

TECHSUMBOT generates useful and diverse answer sum-

maries.

ACKNOWLEDGMENT

This research / project is supported by the Ministry of

Education, Singapore, under its Academic Research Fund Tier

2 (Award No.: MOE2019-T2-1-193). Any opinions, findings

and conclusions or recommendations expressed in this material

are those of the author(s) and do not reflect the views of the

Ministry of Education, Singapore.

REFERENCES

[1] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: Automated generation
of answer summary to developers’ technical questions,” in ASE 2017.
IEEE, 2017, pp. 706–716.

[2] L. Cai, H. Wang, B. Xu, Q. Huang, X. Xia, D. Lo, and Z. Xing, “An-
swerbot: an answer summary generation tool based on stack overflow,”
in FSE 2019, 2019, pp. 1134–1138.

[3] Y. Chengran, B. Xu, F. Thung, Y. Shi, T. Zhang, Z. Yang, X. Zhou,
J. Shi, J. He, D. Han et al., “Answer summarization for technical queries:
Benchmark and new approach,” in 2022 37nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2022.

[4] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in
Proceedings of the 2004 conference on empirical methods in natural
language processing, 2004, pp. 404–411.

[5] D. Jacob, C. Ming-Wei, L. Kenton, and T. Kristina, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of NAACL-HLT, 2019, pp. 4171–4186.

[6] S. Garg, T. Vu, and A. Moschitti, “Tanda: Transfer and adapt pre-trained
transformer models for answer sentence selection,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020, pp.
7780–7788.

[7] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning
of sentence embeddings,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, 2021, pp. 6894–
6910.

[8] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[9] J. Liu, X. Xia, D. Lo, H. Zhang, Y. Zou, A. E. Hassan, and S. Li, “Broken
external links on stack overflow,” IEEE Transactions on Software
Engineering, vol. 48, no. 9, pp. 3242–3267, 2022.

[10] J. Liu, H. Zhang, X. Xia, D. Lo, Y. Zou, A. E. Hassan, and S. Li,
“An exploratory study on the repeatedly shared external links on stack
overflow,” Empirical Software Engineering, vol. 27, no. 1, pp. 1–32,
2022.

[11] Y. Xu and M. Lapata, “Coarse-to-fine query focused multi-document
summarization,” in Proceedings of the 2020 Conference on empirical
methods in natural language processing (EMNLP), 2020, pp. 3632–
3645.

[12] G. Uddin and F. Khomh, “Automatic summarization of api reviews,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 159–170.

[13] S. Nadi and C. Treude, “Essential sentences for navigating stack over-
flow answers,” in 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2020, pp. 229–
239.

[14] A. Naghshzan, L. Guerrouj, and O. Baysal, “Leveraging unsupervised
learning to summarize apis discussed in stack overflow,” in 2021 IEEE
21st International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2021, pp. 142–152.

[15] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality
as salience in text summarization,” Journal of artificial intelligence
research, vol. 22, pp. 457–479, 2004.

135

