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Abstract

Stack Overflow is one of the most influential Software Question & Answer (SQA) web-
sites, hosting millions of programming-related questions and answers. Tags play a critical
role in efficiently organizing the contents on Stack Overflow and are vital to support various
site operations, such as querying relevant content. Poorly chosen tags often lead to issues
such as tag ambiguity and tag explosion. Therefore, a precise and accurate automated tag
recommendation technique is needed. Inspired by the recent success of pre-trained models
(PTMs) in natural language processing (NLP), we present PTM4Tag+, a tag recommendation
framework for Stack Overflow posts that utilize PTMs in language modeling. PTM4Tag+
is implemented with a triplet architecture, which considers three key components of a post,
i.e., Title, Description, and Code, with independent PTMs. We utilize a number of popu-
lar pre-trained models, including BERT-based models (e.g., BERT, RoBERTa, CodeBERT,
BERTOverflow, and ALBERT), and encoder-decoder models (e.g., PLBART, CoTexT, and
CodeTS5). Our results show that leveraging CodeT5 under the PTM4Tag+ framework achieves
the best performance among the eight considered PTMs and outperforms the state-of-the-art
Convolutional Neural Network-based approach by a substantial margin in terms of average
Precision@k, Recall @k, and F1-score@k (k ranges from 1 to 5). Specifically, CodeT5
improves the performance of F1-score@1-5 by 8.8%, 12.4%, 15.3%, 16.4%, and 16.6%,
respectively. Moreover, to address the concern with inference latency, we experimented
PTM4Tag+ using smaller PTM models (i.e., DistilBERT, DistilRoBERTa, CodeBERT-small,
and CodeT5-small). We find that although smaller PTMs cannot outperform larger PTMs,
they still maintain over 93.96% of the performance on average while reducing the mean
inference time by more than 47.2%.

Keywords Tag recommendation - Stack overflow - Pre-trained models - Transformer

1 Introduction

Stack Overflow (SO) is the largest online Software Question & Answer (SQA) platform
that facilitates collaboration and communication among developers for a wide range of
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programming-related activities. As of January 2023, Stack Overflow has more than 20 mil-
lion registered users and hosts over 23 million questions with 34 million answers.! Stack
Overflow has accumulated extensive resources to assist software developers in their daily
development processes.

The rapid growth of Stack Overflow highlights the need to manage the site’s contents at a
large scale. To address this challenge, Stack Overflow uses fags to categorize and structure the
questions. Tags describe the topics and provide a concise summary of the question. Selecting
accurate and appropriate tags can benefit various aspects of site usage, e.g., connecting the
expertise among different communities, triaging questions to the appropriate people with
relevant expertise, and assisting users in searching related questions (Maity et al. 2019; Zhou
et al. 2019; Wang et al. 2015). However, tags on the site are constructed through the process
known as folksonomy,? where the majority of tags are generated by users. The quality of tags
largely depends on users’ expertise levels, English proficiency, and other factors. Tags selected
by different users are likely to be inconsistent, triggering problems like tag ambiguity (i.e.,
the same tag is used for various topics) (Maity et al. 2019) and tag explosion (i.e., multiple
tags are used for the same topic) (Barua et al. 2014). As a result, users may struggle to
find relevant questions, reducing the productivity of programmers. These negative impacts
motivate researchers to develop an automated tag recommendation technique to recommend
high-quality tags for questions.

In this paper, we characterize the task of tagging SO posts as a multi-label classification
problem following previous literature (Wang et al. 2014; Zhou et al. 2019; Xu et al. 2021),
i.e., selecting the most relevant subset of tags from a large group of tags. Tagging SO posts is
considered challenging for several reasons. First, posts on Stack Overflow cover an extensive
range of topics, resulting in an extremely large set of tags (over 10 thousand available tags).
Second, allowing users to freely tag their posts introduces great inconsistencies and makes
the tag set rather sparse. Building a single model to accurately capture post semantics and
establish connections to relevant tags is challenging.

A growing body of literature tackled the tag recommendation task of SO posts (Zhou
et al. 2019; Xu et al. 2021). The state-of-the-art solution for the task is Post2Vec (Xu et al.
2021). Post2Vec is a deep learning-based tag recommendation approach using Convolutional
Neural Networks (CNNs) (Schmidhuber 2015) as the feature extractors. Motivated by the
success of CNN in the SO post-tag recommendation task, we focus on further improving the
tag recommendation performance by leveraging the transformer-based pre-trained models
(PTMs). Compared to Post2Vec, PTMs enhance CNN with the self-attention mechanism
and provide a much better model initialization with pre-training knowledge. Such properties
make PTMs suitable for tagging SO posts and prompt our interest in adopting them.

Transformer-based PTMs have achieved phenomenal performance in the Natural Lan-
guage Processing (NLP) domain (Devlin et al. 2018; Liu et al. 2019b; Raffel et al. 2020).
They are shown to vastly outperform other techniques like LSTM (Huang et al. 2015) and
CNN (Schmidhuber 2015). Inspired by their success, there is an increased interest in apply-
ing PTM to the field of software engineering (SE). Such PTMs are proven to be effective in
multi-class or pair-wise text classification tasks such as sentiment analysis (Zhang et al. 2020)
and API review (Yang et al. 2022). To the best of our knowledge, aside from our conference
paper that this paper is extended from, no studies in the SE literature have investigated the
performance of directly fine-tuning PTMs in handling a multi-label classification problem

1 https://stackexchange.com/sites?view=list#traffic

2 https://en.wikipedia.org/wiki/Folksonomy
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with thousands of labels. This motivates us to explore the effectiveness of PTMs in the task
of SO tag recommendation.

Nonetheless, directly applying PTMs from the NLP-domain to SE-related downstream
tasks has limitations. Texts in different domains (i.e., NLP and SE) usually have different word
distributions and vocabularies. Software developers are free to create identifiers they prefer
when writing code. The formulated identifiers are often compound words and arbitrarily
complex, e.g., addltemsToList (Shi et al. 2022). Words may also have a different meaning
for software engineering. For example, the word “Cookie” usually refers to a small chunk
of data stored by the web browser to support easy access to websites for software engineers,
and it does not refer to the “baked biscuit” in the context of SE. PTMs trained with natural
language text may fail to capture the semantics of SE terminology. NLP-domain language
models (e.g., BERT Devlin et al. 2018 and RoBERTa Liu et al. 2019b) are usually extensively
pre-trained with a significantly larger corpus than the SE-domain PTMs as it is much more
difficult to obtain a high-quality, large-scale corpus of a specialized domain. Since each kind
of model has its potential strengths and weaknesses, it prompts our interest in exploring the
impact and limitations of different PTMs from the NLP-domain and SE-domain.

In this paper, we introduce PTM4Tag+, a framework that utilizes popular pre-trained mod-
els and trains a multi-label classifier on the transformer architecture for recommending tags
for SO posts. We evaluate the performance of PTM4Tag+ with different PTMs to identify the
best variant. We categorize PTMs from two dimensions: domain-difference (NLP-domain
vs. SE-domain) and architecture-difference (encoder-only vs. encoder-decoder). While the
encoder-only BERT-based PTMs have been widely used in language modeling, we delve into
the language representation from another family of pre-trained models: the encoder-decoder
models. Encoder-decoder models like CodeT5 (Wang et al. 2021) and PLBART (Ahmad et al.
2021) boost the state-of-art-performance for numerous SE-related downstream tasks (e.g.,
code summarization, code generation, and code translation). Intuitively, encoder-decoder
models should also be powerful in language modeling. Recent studies have demonstrated
that the embeddings generated by T5 are superior to those generated by BERT (Ni et al.
2022). Nonetheless, in the SE domain, there are limited studies on leveraging popular
encoder-decoder models (e.g., CodeT5 and PLBART) in classification tasks and evaluat-
ing the representation generated by these models. To fill this gap, we examine the efficacy of
popular encoder-decoder models under the PTM4Tag+ framework.

Furthermore, in order to increase the usability of PTM4Tug+, we reduce the size of
PTM4Tag+ by adopting smaller PTMs. In terms of deployment, a tool with a smaller size is
more practical for integration in modern applications as it requires less storage and runtime
memory consumption. On the other hand, the inference latency would be much faster, and
user satisfaction can be hugely increased in the context of tagging SO posts. To address the
concern with model size, we first identify several PTMs that can yield promising results
under the PTM4Tag+ framework and then leverage the smaller version of these PTMs to
train four more variants of PTM4Tag+ .

To obtain acomprehensive understanding of PTM4Tag+, we answer the following research
questions:

RQ1I: Out of the eight variants of PTM4Tag+ with different PTMs, which gives the
best performance? Considering that each model has its potential strengths and weak-
nesses, it motivates us to study the impact of adopting different PTMs in PTM4Tag+.
Namely, we compare the results of BERT (Devlin et al. 2018), RoOBERTa (Liu et al. 2019b),
ALBERT (Lan et al. 2020b), CodeBERT (Feng et al. 2020), BERTOverflow (Tabassum et al.
2020), PLBART (Ahmad et al. 2021), CoTexT (Phan et al. 2021), and CodeT5 (Wang et al.
2021).
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RQ2: How is the performance of PTM4Tag+ compared to the state-of-the-art approach
in Stack Overflow tag recommendation? In this research question, we examine the effective-
ness and performance of PTM4Tag+ by comparing it with the CNN-based state-of-the-art
baseline for the tag recommendation task of Stack Overflow, i.e., Post2Vec (Xu et al. 2021).

RQ3: Which component of post benefits PTM4Tag+ the most? PTM4Tag+ is imple-
mented with a triplet architecture, which encodes the three components of an SO post, i.e.,
Title, Description, and Code with different Transformer-based PTMs. Considering that each
component may carry a different level of importance for the tag recommendation task, we
explore the contribution of each component by conducting an ablation study.

RQ4: How is the performance of PTM4Tag+ with smaller pre-trained models? Utiliz-
ing PTMs gives great performance but results in high inference latency and difficulties in
deployment (Shi et al. 2023). In this RQ, we select smaller PTMs to train PTM4Tag+.

As an extended version of our previous work (He et al. 2022), which proposed and
evaluated the PTM4Tag framework, this paper further enhances PTM4Tag by empirically
experimenting with more PTMs, including a set of Seq2Seq models and smaller PTMs.

We derived several useful findings from the experiments and we highlight the difference
to our previous work in bold:

1. PTM4Tag+ with CodeTS5 outperforms other PTMs and the previous state-of-the-art
approach (i.e. Post2Vec) by a large margin.

2. Although PTM4Tag+ with ALBERT and BERTOverflow perform worse than Post2Vec,
other PTMs are capable of outperforming Post2Vec. Thus, we conclude that leveraging
PTMs can help to achieve promising results, but the PTM within PTM4Tag+ needs to
be rationally selected.

3. Encoder-decoder PTMs can also benefit the PTM4Tag+ framework. While encoder-
decoder PTMs are usually used for generation tasks, we advocate future studies to
include the Seq2Seq PTMs as baseline methods for representing SO posts.

4. We reduce the size of PTM4Tag+. Specifically, the inference time is improved by
more than 47.2%, while the model preserves more than 93.96% of the original
performance.

The contributions of the paper are summarized as follows:

1. We propose PTM4Tag+, a transformer-based muli-label classifier, to recommend tags
for SO posts. To the best of our knowledge, our work is the first to leverage pre-trained
language models for tag recommendation of SO posts. Our proposed tool outperforms
the previous state-of-the-art technique, Post2Vec, by a substantial margin.

2. We explore the effectiveness of different PTMs by training eight variants of PTM4Tag+
and comparing their performance. We consider a set of BERT-based PTMs and encoder-
decoder PTMs.

3. We further conducted an ablation study to investigate the contribution of each component
to the task.

4. We address the concern with model size and inference latency by involving a set of
smaller PTMs under the PTM4Tag+ framework.

The paper is structured as follows: Section 2 introduces the background knowledge for
the tag recommendation task of SO, the state-of-the-art baseline approach, and five popular
PTMs that are investigated in our study. Section 3 describes our proposed approach in detail.
Section4 specifies the experimental settings. Section 5 presents the experimental results with
analysis. In Section 6, we conducted a qualitative analysis, discussed the threats to validity
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and summarized our learned lessons. Section 7 reviews the literature on PTMs applied in SE,
and the tag recommendation approaches for Software Question & Answer sites. Finally, we
conclude our work and discuss future work in Section 8.

2 Background

In this section, we formalize the tag recommendation task for SO posts as a multi-label
classification problem. Then, we describe Post2Vec (Xu et al. 2021), the state-of-the-art tag
recommendation approach that is used as a baseline in this paper. In the end, we introduce
the pre-trained language models that are leveraged in PTM4Tag+.

2.1 Tag Recommendation Problem

Considering that an SO post can be labeled by one or multiple tags, we regard the tag
recommendation task for SO posts as a multi-label classification problem. We denote the
corpus of SO posts by X and the collection of tags as ). Formally speaking, given an SO
postx € X, the tag recommendation task aims to acquire a function f that maps x to a subset
of tags y = {y1, y2, ..., yi} C Y that are most relevant to the post x. We denote the total
number of training examples as N, the total number of available tags® as L and the number
of tags of training data as [, such that L = |Y| and [ = |y|. Note that one SO post can be
labeled with at most five tags, so / must be equal to or less than 5.*

2.2 Post2Vec

Xu et al. proposed Post2Vec (Xu et al. 2021), a deep learning-based tag recommendation
approach for SO posts, which achieves state-of-the-art performance. Xu et al. trained several
variants of Post2Vec to examine the architecture design from multiple aspects. In this paper,
we select their best-performing variant as our baseline model. Specifically, our baseline
model leverages CNN as the feature extractor of the post and divides the content of a post
into three components, i.e., Title, Description, and Code. Each component of a post has
its own component-specific vocabulary and is modeled separately with a different neural
network.

2.3 Pre-trained Language Models

Recent trends in the NLP domain have led to the rapid development of transfer learning.
Especially, substantial work has shown that pre-trained language models learn practical and
generic language representations which could achieve outstanding performance in various
downstream tasks simply by fine-tuning them on a smaller dataset, i.e., without training a
new model from scratch (Lin et al. 2021; Jin et al. 2020; Qu et al. 2019). With proper training
manner, the model can effectively capture the semantics of individual words based on their
surrounding context and reflect the meaning of the whole sentence.

A major drawback of Post2Vec is that its underlying neural network (i.e., CNN) has
limitations in modeling long input sequences. CNN requires large receptive fields to model
long-range dependencies (Schmidhuber 2015). However, increasing the receptive field dra-

3 https://stackoverflow.com/help/tagging
4 https://resources.stackoverflow.co/topic/product- guides/topic- tag-targeting/
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Fig. 1 The architecture of encoder-only and encoder-decoder models

matically reduces computational efficiency. We addressed this limitation by leveraging the
Transformer-based PTMs, which enhanced the architecture with a self-attention mechanism
and pre-trained knowledge obtained from other datasets. We categorized the considered PTMs
in this paper into two types: the encoder-only PTMs and the encoder-decoder PTMs. The
architectural difference between these two types of PTMs is illustrated in Fig 1. In Table 1,
we summarize the architecture, pre-training tasks, downstream tasks from the original paper,
and language type of the PTMs used in this paper. Tables 2 and 3 presents the details of the
abbreviation used in Table 1.

2.3.1 BERT-based Pre-trained Models

BERT-based Pre-trained Models utilize only the encoder stacks of a Transformer model. The
attention layers have the ability to access every word of the input sentence, and these models
are commonly referred to as having “bi-directional" attention. The pre-training objectives
of these models typically involve some form of corruption to a given sentence (i.e., mask
language model and replaced token detection). BERT-based Pre-trained Models are powerful
techniques for generating sentence embeddings and are well-suited for language understand-
ing tasks.

Table 1 Summarization of pre-trained models used in this paper, including the pre-training task, architecture,
downstream tasks, and language type

Model Training tasks Architecture Downstream tasks (SE tasks) Language type
RoBERTa MLM EN - NL

BERT MLM, NSP EN - NL

ALBERT MLM, NSP EN - NL
BERTOverflow MLM EN SER NL
CodeBERT MLM, RTD EN CR, CS QA, CT, BE, CSM NL, PL
PLBART DAE ED DD, CD, QA, CT,BF,CS,CG NL,PL
CodeT5 SMLM, IT, IMLM, BDG ED DD, CD, QA, CT, BE, CSM, CG NL, PL
CoTexT SMLM ED DD, BF CSM, CG NL, PL
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Table 2 Description and abbreviation of the pre-training tasks mentioned in Table 1

Pre-train tasks Abb Description

Mask language modeling MLM Given an input where certain tokens are hidden (masked),
the model predicts those missing tokens

Next sentence prediction NSP Assesses whether two provided sentences naturally
appear in sequence

Replaced token detection RTD Recognizes whether a specific token in the input is artifi-
cially generated, rather than being from the original text

Denoising auto-encoding DAE From an input where tokens have been modified (through
masking, deletion, or replacement), the model aims to
reproduce the original input

Seq2Seq MLM SMLM Using an encoder-decoder architecture, the model tries to
predict a sequence of tokens that have been masked out

Identifier tagging 1T Classifies each token in the input based on whether it’s
an identifier or not
Identifier MLM IMLM In the context of code, this task involves predicting

masked-out identifiers

Bimodal dual generation BDG Given a natural language description/code, it produces
code/natural language description and vice versa

BERT BERT (Devlin et al. 2018) is based on the Transformer architecture (Vaswani et al.
2017) and contains the bidirectional attention mechanism. BERT is pre-trained on a large
corpus of general text data, including the entire English Wikipedia dataset and the BooksCor-
pus (Zhu et al. 2015). It has two pre-training tasks: Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP). Given an input sentence where some tokens are masked
out, the MLLM task predicts the original tokens for the masked positions. Given a pair of sen-
tences, the NSP task aims to predict whether the second sentence in the pair is the subsequent
sentence to the first sentence.

DistilBERT DistilBERT is a smaller and lighter version of the BERT model. As the number
of parameters of PTMs is getting bigger and bigger, DistilBERT aims to reduce the compu-
tational cost of training and inference processes while preserving most of the performance of
the larger models. In comparison with the BERT model, which has 12 hidden layers and 110
million parameters in total, DistilBERT only has six hidden layers and 66 million parameters.
DistilBERT has leveraged knowledge distillation (Hinton et al. 2015) during the pre-training
phase and shown that it is possible to retain 97% of BERT’s language understanding abilities
with a 40% reduction in the model size and 60% faster.

Table 3 Abbreviations of architecture type, langauge type, and downstream tasks in Table 1

Architecture type Downstream tasks

Encoder-only (EN) Software Entity Recognition (SER) Bug Fixing (BF)
Encoder-decoder (ED) Code-to-Code Retrieval (CR) Code Summarization (CSM)
Language Type Code Search (CS) Defect Detection (DD)
Natural Language (NL) Code Question Answering (QA) Clone Detection (CD)
Programming Language (PL) Code Translation (CT) Code Generation (CG)
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RoBERTa RoBERTa (Liu et al. 2019b) is mainly based on the original architecture of BERT,
but modifies a few key hyper-parameters. It removes the NSP task and feeds multiple con-
secutive sentences into the model. ROBERTa is trained with a larger batch size and learning
rate on a dataset that is an order of magnitude larger than the training data of BERT (Devlin
et al. 2018; Zhu et al. 2015).

DistilRoBERTa Similar to DistilBERT, DistilRoBERTa is the distilled version of the
RoBERTa model. By leveraging the same pre-training strategy (i.e., knowledge distillation),
DistilRoBERTa has 34% fewer parameters (i.e., 82 million parameters) than ROBERTa, but
twice as fast.

ALBERT ALBERT (Lan et al. 2020b) is claimed as A Lite BERT. ALBERT involves
two parameter reduction techniques: factorized embedding parameterization and cross-layer
parameter sharing. Factorized embedding parameterization breaks down the large embed-
ding matrix into two small matrices, and cross-layer parameter sharing prevents the parameter
from growing with the depth of the network. Both techniques can effectively reduce the num-
ber of parameters without compromising the performance. Additionally, it replaces the NSP
task used by BERT with the Sentence Order Prediction (SOP) task. By doing so, ALBERT
can significantly reduce the number of model parameters and facilitate the training process
without sacrificing the model performance.

CodeBERT CodeBERT follows the same architectural design as RoOBERTa. However, Code-
BERT (Feng et al. 2020) is pre-trained on both natural language (NL) and programming
language (PL) data from the CodeSearchNet database (Husain et al. 2020). CodeBERT con-
siders two objectives at the pre-training stage: Masked Language Modeling (MLM) and
Replaced Token Detection (RTD). The goal of the RTD task is to identify which tokens
are replaced from the given input. CodeBERT uses bimodal data (NL-PL pairs) as input at
the pre-training stage to understand both forms of data. The CodeBERT model has been
proven practical in various SE-related downstream tasks, such as Natural Language Code
Search (Zhou et al. 2021; Huang et al. 2021), program repair (Mashhadi and Hemmati 2021),
etc (Feng et al. 2020).

Concurrent with the work by Feng et al., researchers from Huggingface have also released
their own CodeBERT model,> which is also pre-trained with the CodeSearchNet data. The
CodeBERT model released by Feng et al. has the same number of layers and parameters
as RoBERTa (12 layers and 128 million parameters). In comparison, HuggingFace’s model
only has six layers and 84 million parameters. In our paper, we refer to the model trained
by Feng et al. as the CodeBERT model, and the model trained by HuggingFace as the
CodeBERT-small model.

BERTOverflow BERTOverflow (Tabassum et al. 2020) is a SE-domain PTM trained with 152
million sentences from Stack Overflow. The author of BERTOverflow introduces a software-
related name entity recognizer (SoftNER) that combines an attention mechanism with code
snippets. The model follows the same design as the BERT model with 110 million parameters.
Experimental results showed that leveraging embedding generated by BERTOverflow in
SoftNER substantially outperformed BERT in the code and named entity recognition task
for the software engineering domain.

5 https://huggingface.co/huggingface/CodeBERTa-small-v1

@ Springer


https://huggingface.co/huggingface/CodeBERTa-small-v1

Empirical Software Engineering (2025) 30:28 Page9of41 28

2.3.2 Encoder-decoder Pre-trained Models

In contrast with the BERT-based PTMs, which have an encoder-only architecture, encoder-
decoder models follow the full transformer architecture.

CodeT5 Wang et al. proposed CodeT5 (Wang et al. 2021), which inherits the T5 (Text-To-
Text Transfer Transformer) architecture and conducts the denoising sequence-to-sequence
pre-training. To assist the model in better understanding programming languages, Wang et
al. extend the denoising objective of TS5 proposed with identifier tagging and prediction
tasks. CodeT? is trained to recognize which tokens are identifiers and to predict them from
masked values. Moreover, CodeT5 leverages a bimodal dual-generation task for NL-PL
alignment. CodeT5 provides the ability for multi-task learning, and it is capable of being
fine-tuned in numerous downstream tasks, including code summarization, code generation,
code translation, code refinement, defect prediction, clone detection, etc.

Wang et al. implemented several versions of CodeT5 with different sizes, where CodeT5-
small has 60 million parameters and CodeT5-base has 220 million parameters. In this paper,
we refer to CodeT5-base as CodeT5 and CodeT5-small as CodeT5-small.

PLBART PLBART (Ahmad et al. 2021) is proposed by Ahmad et al. and is capable of per-
forming a broad spectrum of program understanding and generation tasks. PLBART inherits
the BART (Lewis et al. 2020) architecture and is trained using multilingual denoising tasks
in Java, Python, and English. PLBART is pre-trained with a large-scale bi-model corpus of
both natural languages and programming languages, including Java, Python, and English.
PLBART has been shown to outperform the rival state-of-the-art methods in code summariza-
tion, code translation, and code generation tasks. It is also capable of generating promising
performance in a wide range of language understanding tasks, e.g., program repair, clone
detection, and vulnerable code detection.

CoTexT Phan et al. introduced CoTexT(Code and Text Transfer Transformer) (Phan et al.
2021), which is also implemented in the TS architecture. In the pre-training stage, CoText
mainly leverages the bi-model data collected from the CodeSearchNet corpus (Husain et al.
2020) and GitHub repositories. The effectiveness of CoTexT is demonstrated by evaluating
four tasks, which are code summarization, code generation, defect detection, and code refine-
ment. Results show that CoText is capable of achieving better performance than CodeBERT
and PLBART.

3 Methodology

This section introduces our proposed tag recommendation framework for SO posts,
PTMA4Tag+ in detail. The overall architecture of PTM4Tag+ with three stages is illustrated
in Fig. 3. The three stages are: Pre-processing, Feature Extraction, and Classification. We
first decompose each SO post into three components, i.e., Title, Description, and Code. Thus,
PTM4Tag+ is implemented with a triplet architecture and leverages three PTMs as encoders
to generate representations for each component. Then, at the feature extraction stage, we feed
the processed data into the used PTMs and represent each component as a feature vector. The
obtained feature vectors are then concatenated to construct the final representation of the SO
post. Finally, at the classification stage, the classifier maps the post representation to a tag
vector that indicates the probability of each tag.

@ Springer
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3.1 Pre-processing

During the pre-processing stage, we split an SO post into three components and then conduct
tokenization.

3.1.1 Post Component Extraction

Figure 2 illustrates a typical SO post that consists of three components: Title, Body, and Tags.
The Title summarizes the question, and the Body provides details of the question that helps
readers to understand the question. Following prior studies (Baltes et al. 2018), we further
divide the Body into Description blocks and Code blocks. Description blocks in a Body are
narrative sections that describe the context or problem in natural languages. Code refers to the
parts of the post that are enclosed in HTML tags <pre><code>. For simplicity, we refer
to the sections enclosed in the <pre><code> HTML tags as code snippets in this paper.
However, the sections enclosed in the <pre><code> HTML tags may not always be
actual code snippets; they can also be other types of text, like stack traces or error messages.

Different from prior studies that discarded Code blocks in Post during the pre-processing
stage (because the Code can be written by novices and have low quality), we keep Code
in our work. This is because we observe that the Code blocks in an SO post can provide
valuable semantic information in recommending tags. Take the SO post shown in Fig. 2 as an
example. One of its tags is ‘python’, but neither Title nor Description explicitly mentions
the post is python-related. If we only look at the title and description sections, it is unclear
which programming language this post is asking about. However, by adding the Code into
consideration, the grammar of Python can be easily used to infer that the post is likely to relate
to the tag ‘python’. As a result, we consider that a post is made up of four components:
the Title, Description, Code, and Tags. Our proposed PTM4Tag+ framework takes Title,
Description, and Code as input and aims to predict the sets of tags that are most relevant to
this post (i.e., the Tags).

Removing duplicates in lists Title

Pretty much | need to write a program to check if a list has any duplicates and if it does it
removes them and returns a new list with the items that weren't duplicated/removed. This is
what | have but to be honest | do not know what to do.

1
def remove_duplicates(): X
t=1['a', 'b', 'c', 'd'] |

t2 = ['a', 'c', 'd'] |
1

1

1

1

1

I

I

I

|

I

: for t in t2:

, t.append(t.remove())

: return t Code
python algorithm list duplicates intersection Tags

Fig.2 An example of an SO Post. A post contains a short title that summarizes the main content of this post.
The body of a post can include detailed descriptions written in natural languages and code snippets
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To decompose the SO posts into the above-mentioned four constituents, we identify
the Title and the Tag of posts from the Posts.xml in the official data dump released
by the Stack Overflow website. To extract the Code in posts, we use a regular expression
<pre><code>([\s\S]x?)</code></pre> to identify the code blocks in posts. We then
further remove the redundant HTML tags within these sections since these HTML tags are
used for formatting and are irrelevant to the content of a post.

3.1.2 Tokenization

Since the design of PTM4Tag+ leverages transformer-based PTMs, we rely on the cor-
responding tokenizer of the underlying pre-trained model to generate token sequences.
The conventional PTMs usually accept a maximum input sequence length of 512 sub-
tokens, which also always include two special tokens (CLS) and (SE P). The (CLS) token
(CLaSsification) is the first token of every input sequence, and the corresponding hidden
state is then used as the aggregate sequence representation. (SE P) token (SEParator) is
inserted at the end of every input sequence. The problem of capturing long text arises since
a significant proportion of the training samples has exceeded the maximum acceptable input
limit of the PTMs.

By default, we tackle the problem using a head-only truncation strategy (Sun et al. 2020),
which only considers the first 510 tokens (excluding the (CLS) and (SE P) tokens) as
the input tokens. We also further discuss the impact of the tail-only truncation strategy in
Section 5. Instead of filtering less significant words, we apply the truncation strategy as all the
pre-trained models utilized in our study were not subjected to data filtering during their pre-
training phase. Introducing significant changes to the input data structure may compromise
the model’s performance, as the altered input distribution might not align with the original
data distribution the model was trained on.

3.2 Feature Extraction

During the feature extraction stage, we utilize PTMs as feature extractors to obtain repre-
sentations for Title, Descripition, and Code components of a post. Different components
convey information at varying degrees of detail and follow different text distributions. In our
work, we consider Title, Description, and Code as three independent components and then
leverage three PTMs to generate representations for each component. We then concatenate
the representations of the three components as post-representation.

3.2.1 Language Modeling with PTMs

We use PTMs to generate embeddings for each component. Training transformer-based
models from scratch can be extremely resource-intensive in terms of computational cost,
time, and data requirements. Without adequate pre-training, the performance of such models
can be considerably suboptimal. Taking the expensive cost at the pre-training stage into
account, we leverage the released PTMs by the community in the design of PTM4Tag+ to
generate contextual word embeddings.

The pre-trained model part of PTM4Tag+ is replaceable, and we have empirically
implemented eight variants of PTM4Tag+ with different PTMs (refer to Section 4.4) and
investigated the impact of the PTM selection within PTM4Tag+.
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3.2.2 Pooling and Concatenation

After the word embeddings are generated, we obtain the post representation by applying a
pooling strategy. Pooling refers to the process of transforming a sequence of (token-level)
word embeddings into sentence embedding (wherein a transformer-based model, each word
embedding usually has 768 hidden dimensions). A pooling strategy executes the down-
sampling on the input representation, and it condenses the granular (token-level) word
embeddings into a fixed-length sentence embedding that is intended to capture the meaning
of the whole context.

We consider two categories of PTMs in our work, i.e., BERT-based PTMs and encoder-
decoder PTMs. We discuss how to get embeddings from these two types of PTMs respectively.
Prior studies showed that there are several common choices to derive fixed-size sentence
embeddings from BERT-based PTMs (Reimers and Gurevych 2019), including (1) using the
first CLS token, (2) Average Pooling and (3) Maximum Pooling. More specifically, Reimers
and Gurevych (Reimers and Gurevych 2019) have evaluated the effectiveness of different
pooling strategies on the SNLI dataset (Bowman et al. 2015) and the Multi-Genre NLI
dataset (Williams et al. 2018) in the sentence classification task, and the reported Average
Pooling gives the best performance in both datasets. Inspired by the findings, our proposed
method leverages the Average Pooling strategy on the hidden output to generate component-
wise feature vectors by default.

While BERT-based PTMs are encoder-only, Encoder-decoder PTMs have the full trans-
former architecture with both encoder and decoder modules. According to Ni et al. (2022),
typically, strategies to obtain sentence representations for encoder-decoder PTMs are (1)
Encoder-only first: use the first token of the encoder output as the sentence embedding (2)
Encoder-only mean use the average of the encoder outputs (3) Encoder-Decoder first: use
the first decoder output as the sentence embedding. Experiments from Ni et al. showed that
the Encoder-only mean produced the best performance. Hence, we adopt the second strategy
to obtain component-wise embeddings for encode-decoder PTMs.

Finally, we concatenate the three component-wise embeddings (i.e., Title, Description,
and Code) sequentially to obtain the final representation of an SO post.

3.3 Model Training and Inference

After performing average pooling, we concatenate the output embeddings and feed it into a
feed-forward neural network to perform the task of multi-label classification. Given a training
dataset consisting of X' (a set of SO posts) and corresponding ground truth tags y for each
X € X, we train a tag recommendation model f by minimizing the following objective:

N L

DOy x log(f (yjlx)) + (1= yj) x log(1 = f(yjlx:)) )

i=1 j=I

1

L=——
N

In the above equation, N = |X| is the total number of training examples and f (y;|x;)
is the probability that tag y; is related to the SO post x;. The objective captures the binary
cross-entropy loss on all the training examples and can be optimized by gradient descent via
back-propagation. Note that the gradient flow passes through both the multi-label classifier
and the PTMs used to process Title, Description, and Code. The parameters of both the tag
predictor and the PTMs are updated during the training process of PTM4Tag+.
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Given an input x;, PTM4Tag+ produces a vector corresponding to all the tags. An element
f(yjlx;) in the vector corresponds to the probability that tag y; is relevant with SO post x;.
Stack Overflow sets a limit k for the number of tags a post can have, and we rank the tags
in descending order according to their probabilities produced by PTM4Tag+. The top k tags
with the highest probabilities are recommended for a SO post.

4 Experimental Settings

This section introduces the research questions, describes the dataset in our experiment, the
commonly-used evaluation metrics of a tag recommendation technique, and the implemen-
tation details of all considered models.

4.1 Research Questions

In this work, we propose PTM4Tag+, a framework that trains a transformer-based multi-
label classifier to recommend tags for SO posts. To examine the effectiveness and contain a
comprehensive understanding of PTM4Tag+, we are interested in answering the following
four research questions:

RQ1: Out of the eight variants of PTM4Tag+ with different PTMs, which gives the best
performance?

Transformer-based pre-trained language models have witnessed great success across mul-
tiple SE-related tasks. To the best of our knowledge, our work is the first that leverages PTMs
in recommending tags for SQA sites. Past studies have shown that different PTMs have their
own strengths and weaknesses. The effectiveness of PTMs varies by task due to the fact that
they are pre-trained with various datasets, pre-training objectives, and vocabularies.

For example, Von der Mosel et al. (2022) found BERTOverflow outperforms the NLP-
domain PTM, BERT, by a substantial margin in issue type prediction and commit intent
prediction. Mosel et al. further reported that the vocabulary of SE-domain PTMs (i.e.,
BERTOverflow) contains many programming-related vocabularies such as jvm, bugzilla,
and debug which are absent in the vocabulary of BERT (Devlin et al. 2018). However, Yang
et al. reported that the NLP-domain PTMs (e.g. BERT and RoBERTa) perform better than
SE-domain models, i.e., BERTOverflow in the API review classification task (Yang et al.
2022). Yang et al. claimed that this phenomenon may be because of the fact that the NLP-
domain models are likely to be pre-trained on more extensive data. Thus, the efficacy of
different pre-trained models on this task remains unclear. Moreover, in addition to the BERT-
based PTMs which are encode-only, the encoder-decoder PTMs (e.g. CodeT5, PLBART, and
CoText) have also performed surprisingly well in a wide spectrum of SE-related text under-
standing and generation tasks. It is intuitive to assume that the Encoder stacks of these models
are capable of generating powerful text representation. However, not much SE literature has
investigated the performance in classification tasks.

Since the underlying PTMs of PTM4Tag+ are replaceable, it evokes our interest in
investigating the effectiveness of different PTMs under the PTM4Tag+ architecture and
finding the most suitable PTM for SO posts tag recommendation. Namely, we compare the
results of NLP-domain BERT-based models (i.e., BERT Devlin et al. 2018, RoBERTa Liu
et al. 2019b, ALBERT Lan et al. 2020b), SE-domain BERT-based models (i.e., Feng et al.
2020 and BERTOverflow Tabassum et al. 2020), and SE-domain Seq2Seq models (i.e.,
PLBART Ahmad et al. 2021, CoTexT Phan et al. 2021, and CodeT5 Wang et al. 2021).
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RQ2: How is the performance of PTM4Tag+ compared to the state-of-the-art approach
in Stack Overflow tag recommendation?

The current state-of-the-art approach for recommending tags of SO posts is implemented
based on a Convolutional Neural Network and trained from scratch (Xu et al. 2021). However,
Transformer-based PTMs are strengthened with the self-attention mechanism and trans-
ferred pre-train knowledge. In this research question, we investigate whether the variants of
PTM4Tag+ can achieve better performance than the current state-of-the-art approach.

RQ3: Which component of post benefits PTM4Tag+ the most?

PTM4Tag+ is designed with a triplet architecture where each component of a post, i.e.,
Title, Description, and Code, are modeled by utilizing separate PTMs. Title, Description,
and Code snippets complement each other and describe the post from their own perspective.
Title summarizes the question with a few words; Description further expands the content
from the Title; Code snippets often are a real example of the problem. Thus it motivates us
to investigate which component produces the most critical contribution in the PTM4Tag+
framework.

RQ4: How is the performance of PTM4Tag+ with smaller PTMs?

The PTMs considered in RQ1 typically have 12 hidden layers with more than 100 million
parameters. As our PTM4Tag+ uses three PTMs to model different components of an SO post,
the tool size is further increased by three times. Despite the encouraging performance, such a
design has amplified the limitation of PTM4Tag+ with respect to the inference latency. In the
context of tagging SO posts, a faster inference speed could notably increase user satisfaction
when running our tool. Therefore, it prompts our interest in experimenting with smaller
PTMs under the PTM4Tag+ framework. We adopted four additional smaller off-the-shelf
PTMs. As introduced in Section 2, they are DistilBERT, DistilRoBERTa, Code BERT-small,
and CodeT5-small. To the best of our knowledge, we leveraged all available small variants
of the PTMs from RQ1.

4.2 Data Preparation

To ensure a fair comparison to the current state-of-the-art approach (Xu et al. 2021), we
select the same dataset as Xu et al. as the benchmark. The original data is retrieved from the
snapshot of the Stack Overflow dump versioned on September 5, 2018.° A tag is regarded
as rare if its occurrence is less than a pre-defined threshold 6. The intuition is that if a tag
appears very infrequently in such a large corpus of posts (over 11 million posts in total), it is
likely to be an incorrectly created tag that developers do not broadly recognize. Therefore,
we remove such rare tags as they are less important and less useful to serve as representative
tags to be recommended to users (Xia et al. 2013), which is a common practice in prior
research (Xu et al. 2021; Xia et al. 2013; Zhou et al. 2019).

Following the same procedure as Xu et al., we set the threshold 6 for deciding a rare tag
as 50. We calculate the statistics for the occurrences of tags in the dataset. While the total
occurrence of all tags in our dataset is 64,197,938, the sum of occurrence for tags occurring
fewer than 50 times is 33,416. This represents just 0.05% of the total occurrences. Such a
negligible percentage underlines the rarity and insignificance of these tags (tags that occur
fewer than 50 times) within the entire dataset.

We remove all the rare tags of a post and the posts that contain rare tags only from the
dataset. In the end, we have identified 29,357 rare tags and 23,687 common tags in total,

6 https://archive.org/details/stackexchange
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which is the same number in Xu et al.’s work. As a result, we obtained a dataset consisting
of 10,379,014 posts. We selected 100,000 latest posts as the test data and used the rest of the
10,279,014 posts as the training data. Instead of random sampling, a chronological approach
to splitting data is more representative of mimicking how the system works in real-world
scenarios, especially for the Stack Overflow site.

4.3 Evaluation Metrics

Previous studies of tag recommendation (Xu et al. 2021; Li et al. 2020; Zhou et al. 2019) on
SQAssitesuse Precision@k, Recall @k, F 1-score @k for evaluating the performance of the
approaches. Following prior studies, given a corpus of SO posts, X = {x1, ...x,}, we report
Precision@k;, Recall@k;, F1-score@k; on each post x; respectively where 0 <i < n
and calculate the average of Precision@k;, Recall @k;, F1-score@k; as Precision @k,
Recall @k, F1-score@k to be the final measure.

Precision@k measures the average ratio of predicted ground truth tags among the list of the
top-k recommended tags. For the ith post in the test dataset, we denote its ground truth tags
for a particular post by GT; and predicted top-k tags of the model by Tagf‘. We calculate
Precision@k; as:

GT; N Tagk
Precision@k; = % @)
Then we average all the values of Precision@k;:
|| -
1 Precision@k;
Precision@k = 2o i 3)

|¥]

Recall@k reports the proportion of correctly predicted ground truth tags found in the list of
ground truth tags. The original formula of Recall @k; has a notable drawback: the Recall
score would be capped to be small when the value of k is smaller than the number of ground
truth tags. In the past literature (Xu et al. 2021; Zhou et al. 2019; Li et al. 2020), a modified
version of Recall @k is commonly adopted as indicated in (4) and (5). We have adopted the
modified Recall @k in our work, which is as same as the one used to evaluate the current
state-of-the-art approach in (Xu et al. 2021).

GTiNTagk .
Recall@k; = lTa(gw if IGT;| > k “
i = ) k
G i IGT < k
[X]
1 Recall @k;
Recall @k = @ s

X

F1-score@k is the harmonic mean of Precision@k and Recall @k and it is usually con-
sidered as a summary metric. It is formally defined as:
Precision@k; x Recall @k;

F1-s @kl =2 ¢
score % Precision@k; + Recall @k; “

Zlil Fl-score@k;
X

Fl-score@k = @
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Table 4 Variants of PTM4Tag+

Model name BERT-Base model Considered components Architecture
BERT 471 BERT Title, Description,Code Triplet
RoBERTa, g 1 RoBERTa Title, Description,Code Triplet
ALBERT 471 ALBERT Title, Description,Code Triplet
CodeBERT 4.1, CodeBERT Title, Description,Code Triplet
BERTOverflow 47 1. BERTOverflow Title, Description,Code Triplet
CodeT5471, CodeT5 Title, Description,Code Triplet
PLBART 47,1, PLBART Title, Description,Code Triplet
CoTexT Ay CoText Title, Description,Code Triplet
CodeT5 NoTitle CodeT5 Description,Code Twin
CodeT5 NopDesc CodeT5 Title, Code Twin
CodeT5 Nocode CodeT5 Title, Description Twin
DistilBERT 47 1, DistilBERT Title, Description,Code Triplet
DistilRoBERTa 4y 7, DistilRoBERTa Title, Description,Code Triplet
CodeBERT-small 47,7, CodeBERT-small Title, Description,Code Triplet
CodeT5-smally 1 CodeT5-small Title, Description,Code Triplet

A large volume of literature on tag recommendation of SQA sites evaluates the result with
k equals to 5, and 10 (Li et al. 2020). However, the number of the tags for Stack Overflow
post is not allowed to be greater than 5; thus, we set the maximum value of k to 5, and we
evaluate k on a set of values such that k € {1, 2, 3, 4, 5}.

For example, assume we have a Stack Overflow post with ground truth tags (i.e., python,
machine-learning, neural-network, tensorflow, keras) and a set of predicted tags (i.e., python,
pytorch, neural-network, tensorflow, and keras). We calculate the Precision@5 = 0.8 (1) and
Recall@5 = 0.8 (3). Thus we can use these values to compute the F1-score@5 = 0.8 (5).

4.4 Implementation

To answer the four research questions mentioned in Section 1, we train fifteen variants of
PTM4Tag+. Details about each variant model are summarized in Table 4.

For RQ1, we train eight variants of PTM4T1ag+ by using different PTMs (i.e.,
CodeBERT 411, ALBERT 411, BERT o1 1., RoOBERTa, 1, BERTOverflow s 1., CodeT5 411,
PLBART 411, CoTexT4 11 in Table 4) and empirically investigate their performance. Each
variant follows the triplet architecture (as illustrated in Fig. 3).

For RQ2, we compare the performance of PTM4Tag+ (with the best performing PTM)
with the state-of-the-art approach, namely Post2Vec. To reproduce the baseline introduced
in Section 2.2, we reuse the replication package’ released by the original authors.

In RQ3 we develop three ablated models, CodeT5 y7it1e, CodeTS yopesc, and CodeTS yocodes
(as shown in Table 4) as CodeT5 41 1, has the best performance from the experimental results of
RQI. Different to the variants from RQ1, each ablated model only contains two components
and is implemented with a Twin architecture. In another words, two PTMs are leveraged in
generating post embeddings, whereas the original design of PTM4Tag+ involves three PTMs.

7 https://github.com/maxxbw54/Post2Vec

@ Springer


https://github.com/maxxbw54/Post2Vec

Empirical Software Engineering (2025) 30:28 Page 17 of 41 28

Tag Probabilities

L4 g t 41
_‘ QQQ .. TagPredictor .. QQQ’
Classification — @

— [ Concatenation ]
[ AVGPooling ] [ AVGPoolng | [ AVGPooling |
Feature __ | @ @
Encoding [ Title } [ Description J
PTM PTM PTM

I
PTM Tokenizer

- 6

—

oty i

Preprocess —

—
=
=
(0]
—
—
w)
o
(24
Q
jum
el
(=
o
S
)
:: Q ::
o
o
(0]

ahy ahy

>
@
)
Q
Q
(@)
<
)
=
5
2
el
o
Q

Fig.3 The overview of the PTM4Tag+ framework. The title, description, and code are extracted from an SO
post and fed into three different pre-trained models to obtain embeddings for each of them. A classification
model takes the processed embeddings as input and produces probabilities for each tag

The rest of the design is much similar, where we concatenate the component representation
obtained from each encoder and train a multi-label classifier.

For RQ4, we additionally developed 4 variants of PTM4Tag+ by using smaller PTMs
(i.e., DistilBERT 47 1, DistilIRoBERTa ;7 1, CodeBERT-small 47, CodeT5-small4;; from
Table 4). We compared the performance and inference latency of these models with the
best-performing variant of PTM4Tag+ from RQ1.

All the variants of PTM4Tag+ are implemented with PyTorch V.1.10.0% and HuggingFace
Transformer library V.4.12.3.° Considering the extensive amount of the data set, we only
trained the models for one epoch at the fine-tuning stage. For each variant, we set the batch
size as 64. We set the initial learning rate as 7E-05 and applied a linear scheduler to control
the learning rate at run time.

8 https://pytorch.org
9 https://huggingface.co
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5 Experimental Results

In this section, we report the experimental results of the variants under our proposed frame-
work and the baseline approach. We further conduct an ablation study on our best-performing
variant to assess the importance of the underlying component. Finally, we report the perfor-
mance of PTM4Tag+ on smaller PTMs with reduced model size. Based on the results, we
answer the research questions presented in Section 4.

RQ1. Out of the eight variants of PTM4Tag+ with different PTMs, which gives the
best performance?

Results and Analysis To answer the question, we report the performance on eight variants
of PTM4Tag+ . We leverage three NLP-domain BERT-based PTMs (BERT, RoBERTa, and
ALBERT), two SE-domain BERT-based PTMs (CodeBERT and BERTOverflow), and three
SE-domain encoder-decoder PTMs (CodeT5, PLBART, and CoTexT). These variants are
implemented with the Triplet architecture, which considers Title, Description, and Code
as input. We refer to these variant models as BERT 477, RoBERTasr ., ALBERT 411,
CodeBERT 471, BERTOverflowsr1,, CodeT5411, PLBART 411, and CoTextayr; respec-
tively.

Table 5 illustrates the results of applying different PTMs in recommending the tags of
SO posts and Fig.4 draws the boxplot on the distribution of F1-score@5 for each variant.
Performance-wise, CodeT5 411 achieves the highest rank and consistently outperforms the
other variants in all evaluation metrics. For F1-score@1-5, it obtains the performance of
0.855, 0.726, 0.633, 0.568, and 0.519, respectively. ALBERT is the worst-performing model
and BERTOverflow 47 7, is merely better than ALBERT 47 .

Overall, BERTOverflow47; and ALBERT4;; only achieve 0.427 and 0.406 in F1-
score@5, which are lower than the other variants by a substantial margin. CodeBERT 41,
and CoTexT 41 are tied for the second-best performing models, which both obtain an F1-
score@5 of 0.513. In the next line, BERT 47 ; and RoBERTa 4 ; loseCodeBERT 477 and
CoTexT 4 only by a small margin.

From Fig. 4, we can see that the 25% percentile value across most models is around 0.333
for F1-score@5. The median (50% percentile) value is a key metric for central tendency,
and most models center around the 0.5 mark. However, CodeBERT 477, CoTexT 41z, and
CodeT5 41 1. slightly surpass this general trend, showcasing a median of more than 0.571.

As CodeT5411,CoTexT4r 1, and PLBART 41 1 all achieve promising results, we demon-
strate that encoder-decoder PTMs are also capable of generating good representations for SO
posts. A possible reason for this is that these models adopt multi-task learning objectives at
the training stage. Different to BERT-based PTMs, which follow the pretrain-then-finetune
paradigm, encoder-decoder models like CodeT5 are trained with multiple tasks and multiple
datasets at the same time (multi-task learning). Previous literature has claimed that multi-
task learning leads to more generalized and better representations when being adapted to new
tasks and domains (Liu et al. 2019a), our results conform to this claim. Moreover, CodeT5
uses more training data than CodeBERT and has more pre-training tasks than CoTexT. These
may be attributed to its outstanding performance.

ALBERT 47, and BERTOverflow 41 1, are largely outperformed by the other variants. One
possible reason for this could be that ALBERT has fewer parameters since its design aspires to
address the GPU memory limitation. BERTOverflow follows the same architecture as BERT
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Table 5 Comparison of all variants of PTM4Tag+ with a triplet architecture and the baseline approach
Post2Vec

Architecture Domain Model name Precision@k
P@l1 P@2 P@3 P@4 P@5

Encoder-only SE CodeBERT 47 1. 0.848 0.701 0.579 0.486 0.415

BERTOverflow 47,1, 0.725 0.592 0.489 0412 0.354

NLP RoBERTay; 1. 0.843 0.694 0.571 0.478 0.409

BERT 471 0.845 0.696 0.575 0.482 0.413

ALBERT 41, 0.748 0.586 0.469 0.386 0.327

Encoder-decoder SE CodeT547 1. 0.855 0.708 0.586 0.492 0.420

PLBART 47,1, 0.821 0.669 0.547 0.456 0.388

CoTexTapr L 0.848 0.701 0.579 0.486 0.415

- — Post2Vec 0.786 0.628 0.507 0.421 0.359

Architecture Domain Model Name Recall@k

R@1 R@2 R@3 R@4 R@5

Encoder-only SE CodeBERT 411, 0.848 0.756 0.724 0.733 0.757

BERTOverflow 47 . 0.725 0.635 0.607 0.619 0.644

NLP RoBERTa4; ;. 0.843 0.747 0.714 0.722 0.746

BERT 471 0.845 0.750 0.719 0.728 0.752

ALBERT 471 0.748 0.630 0.588 0.588 0.605

Encoder-decoder SE CodeT5,; 1 0.855 0.763 0.732 0.741 0.765

PLBART 411 0.821 0.720 0.683 0.688 0.709

CoTexTapr L 0.848 0.755 0.723 0.733 0.756

- — Post2Vec 0.786 0.678 0.636 0.639 0.659
Architecture Domain Model Name Fl-score@k

F@l F@2 F@3 F@4 F@5

Encoder-only SE CodeBERT 471, 0.848 0.719 0.625 0.561 0.513

BERTOverflow 47 1. 0.725 0.606 0.527 0.475 0.427

NLP RoBERTa,g 1, 0.843 0.711 0.617 0.553 0.505

BERT 471 0.845 0.714 0.621 0.557 0.510

ALBERT 471, 0.748 0.600 0.506 0.447 0.406

Encoder-decoder SE CodeT5,; 1 0.855 0.726 0.633 0.568 0.519

PLBART 411 0.821 0.686 0.590 0.526 0.480

CoTexTArL 0.848 0.719 0.625 0.561 0.513

— — Post2Vec 0.786 0.646 0.549 0.488 0.445

and is designed with a vocabulary better suited to the software engineering domain (Von der
Mosel et al. 2022), but it performs much worse than BERT 477 and RoBERTa,;; by a
large margin. However, the experimental results suggested that BERTOverflow may still
require additional training. It is potentially caused by the quality and size of the datasets
used at the pre-training stage. BERTOverflow is pre-trained with 152 million sentences from
SO. BERT is trained on the entire English Wikipedia and the Book Corpus dataset, written
by professionals and constantly reviewed. However, sentences from SO can be written by
arbitrary authors and the existence of in-line code within a post would introduce extra noise.
Additionally, the training corpus of BERT contains 3.3 billion words in total, and the average
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Fig.4 Distribution of F1-Score@5 for All PTM4Tag+ variants using a triplet architecture

sentence length of BookCorpus is 11 words. By estimation, the training corpus of BERT is
likely to be twice more than BERTOverflow.

Moreover, although CodeBERT and BERTOverflow are both SE-domain PTMs, the per-
formance of these two models is very different. This phenomenon could be because of that
CodeBERT and BERTOverflow are initialized with different strategies before the pre-training
starts. CodeBERT is initialized based on RoBERTa’s checkpoint, whereas BERTOverflow
is trained from scratch with SO data. Initializing with the checkpoint of another pre-trained
model can inherit their knowledge and typically reduce the training effort by orders of mag-
nitude (Rothe et al. 2020).

Comparing CodeBERT with BERT and RoBERTa, CodeBERT has utilized both natural
language and programming language at the pre-training stage, while the other two models are
trained solely with natural language data. As a result, CodeBERT is better at understanding
programming languages and SE terminology. Given that many SO posts contain code snip-
pets, this advantage allows CodeBERT 47, to achieve improved performance. In addition,
the good performance of BERT and RoBERTa also suggests that pre-training models with a
large scale of natural language data also be beneficial for programming language modeling.

Furthermore, conventional PTMs accept a maximum input sequence length of 512 sub-
tokens. Our method utilizes a head-only truncation strategy by default, we further experiment
with the effect of the tail-only truncation strategy. In Table 6, we present the performance of
various variants of PTM4Tag+, in terms of F 1-score @k at different levels (k ranging from
1 to 5) with the tail-only truncation strategy. For convenience, we also add F1-score@k of
head-only truncation strategy in Table 6. When comparing the two truncation strategies for
each variant, the performance differences are minimal. CodeT5 41 1 consistently showed the
highest F1-scores across all values of k for both truncation strategies. Most variants display
slightly better performance under the head-only truncation strategy as compared to the tail-
only truncation. Notably, ROBERTa,4 L L shows a more significant drop in performance with
tail-only truncation, especially for F1-score @1 and F1-score @2. This suggests that the head
portion of the input might be more crucial for ROBERTasr 1. CodeBERT 411, BERT 411,
CodeT541 1, and CoTexT 471 show minimal variations in their performance across the two
truncation strategies. The results presented emphasize the importance of PTM selection under
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Table 6 Results of variants of

Head-only truncati
PTM4Tug+ for Fl-score@k (k cacony truncaton

ranging from 1 to 5) with Model name F@l F@2 F@3 Fe4 F@5s

head-only and tail-only CodeBERT 47 ;. 0.848 0719 0.625 0561 0513

truncation strategies
BERT A7 1 0.845 0.714  0.621 0.557 0.510
RoBERTa,; 1, 0.843 0.711 0.617  0.553 0.505
BERTOverflow,z; 0725 0606 0527 0475 0427
ALBERT 47, 0.748 0.600  0.506  0.447  0.406
CodeTS541 1 0.855 0.726  0.633  0.568 0.519
PLBART 47,1, 0.821 0.686  0.590 0526  0.480
CoTexT AL 0.848 0719  0.625  0.561 0.513
Tail-only Truncation
CodeBERT 47 1. 0.847 0.718  0.624 0560  0.512
BERT /[, 0.844 0714 0620 0556  0.509
RoBERTa, 1, 0.818 0.691 0.600  0.539  0.49%
BERTOverflow 47 1, 0722 0.604 0524 0473 0.425
ALBERT 471, 0.746 0598  0.504  0.445 0.404
CodeTS541 1, 0.854  0.725 0.632  0.567 0.518
PLBART 47, 0.821 0.685 0.590  0.525 0.479
CoTexT4p 0.847 0.718  0.624 0560  0.512

the framework of PTM4Tag+, while the choice between head-only and tail-only truncation
doesn’t lead to vast performance differences. Given that the head-only truncation method
has a slightly better F'1-score@k, it has been selected as the default truncation strategy for
subsequent experiments.

Answers to RQ1: Among the eight considered PTMs of PTM4Tag+, the one imple-
mented with CodeT5 produces the best performance. Most PTMs from the SE
domain give a more promising performance than PTMs from the NLP domain under
PTMA4Tag+.

RQ2. How is the performance of PTM4Tag+ compared to the state-of-the-art
approach in Stack Overflow tag recommendation?

Results and Analysis As presented in Table 5, the best performing variant of PTM4Tag+,
i.e., CodeTS54r 1, substantially outperforms Post2Vec. In terms of F'1-score@k (where k
ranges from 1 to 5), CodeT5 411, improved the performance by 8.8%, 12.4%, 15.3%, 16.4%,
and 16.6%. On the other hand, CodeBERT 41 ; and CoTexT 4y surpass the performance of
Post2Vec by 7.9%, 11.3%, 13.8%, 15.0% and 15.3%, respectively; BERT 411, RoOBERTa, 1,
and PLBART 411, are also able to outperform Post2Vec by 4.4% to 14.6%. However, not all
PTMs demonstrated exceptional performance under PTM4Tag+. Post2Vec outperformed
BERTOverflow 47,1 by 8.4%, 6.6%, 8.5%, 2.7%, and 4.7%, and outperformed ALBERT 471,
by 5.1%, 7.7%, 8.5%, 9.2%, and 9.6% in F1-score@1-5.

Different from Post2Vec, PTM4Tag+ involves a vast amount of knowledge accumulated
from the dataset used for pre-training. PTM4Tag+ leverages PTMs to extract feature vectors
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and optimize the post representation during the fine-tuning stage, whereas Post2Vec learns
post representations from scratch. Thus, PTMs give a better initialization of the model.
Furthermore, CodeT5 provides in-domain knowledge of SE. Our results indicate that the
knowledge learned in the pre-training stage is valuable to the success of the tag recommen-
dation task.

Another potential reason for the superior performance of PTM4Tag+ is that transformer-
based models are more powerful than CNN in capturing long-range dependencies (Vaswani
et al. 2017). The architecture of BERT-based PTMs is inherited from a Transformer. One
of the critical concepts of Transformers is the self-attention mechanism, which enables its
ability to capture long dependencies among all input sequences. Our results demonstrate the
effectiveness and generalizability of transfer learning and reveal that the PTMs can achieve
outstanding performance in the tag recommendation task for SO posts.

Answers to RQ2: CodeT547;, PLBARTs77, CoTexTar;, CodeBERT 47y,
BERT 411, and RoBERTa 4z, outperform the state-of-the-art approach by a substan-
tial margin. However, BERTOverflow 477 and ALBERT 477 demonstrated worse
performance than the state-of-the-art approach.

RQ3. Which component of post benefits PTM4Tag+ the most?

Results and Analysis To answer this research question, we conduct an ablation study to
investigate the importance of each component, i.e., Title, Description, and Code, respectively.
Note that PTM4Tag+ is implemented with a triplet architecture by default. To answer this
research question, we modified it to a twin architecture to fit two considered components at a
time. We train three ablated models with our identified best-performing PTM, i.e., CodeTS5.

The results for RQ3 are presented in Table 7. Notice that Table 7 also contains the results
for the ablated model for CodeBERT 4. ;,, which is the best-performing variant in our previous
ICPC paper. From the table, we identify that CodeT5 47 ; remains to be the best-performing
model on all evaluation metrics. The results of both variants CodeT5 471 and CodeBERT 4.1,
show that code plays the least important role. Excluding title and description also leads to a
decline in all metrics, but the drop is less severe than when removing the code.

To provide a more intuitive understanding of the result, we further illustrate the perfor-
mance gap of F1-score@1-5 between the ablated models and CodeT5 477 by visualizing
in Fig. 5, where the value on the y axis is calculated using the score of CodeT5 477, minus the
score of the ablated model. CodeT5 nocoqe Yielded the most promising performance among
the ablated models, which implies that the code snippets are beneficial, but they are the least
significant among all three components.

An interesting finding is that CodeTSy,pesc performed better in Fl-score@1 and
CodeTS5y,rir1e performed better in F'1-score@2-5. It implies that Title is more important
for boosting the performance of F'1-score @1 and Description is more critical for improving
Fl-score@2-5. A possible explanation could be that Title always succinctly describes a
post’s central message, which could directly help the system predict the top tag. Descrip-
tion is usually much longer and elaborates the Title with more explanations; thus, it is more
beneficial to recommend multiple tags. Moreover, as CodeT5 47 1 is still the best-performing
model, it confirms that Code is a meaningful component and we need all three components
in the tag recommendation task of SO.
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Table 7 Experiment results of

RQ3: Ablation study for post Model Name IIZY(;CIISIOI’I (?)12@2 P@3 Po4 PG5

components using both CodeT5

and CodeBERT models CodeTSALL 0855 0708 0586 0492  0.420
CodeTS NoCode 0.822 0.677 0.558 0.470 0.403
CodeT5NoDesc 0.821 0.669 0.547 0.456 0.388
CodeT5 NoTitle 0.817 0.673 0.557 0.468 0.401
CodeBERT 1. 0.848 0.701 0.579 0.486 0.415
CodeBERT pycode 0.823 0.682 0.562 0.472 0.408
CodeBERT yypesc 0.822 0.671 0.549 0.458 0.390
CodeBERT N, Title 0.808 0.664 0.547 0.460 0.394
Model Name Recall@k

R@1 R@2 R@3 R@4 R@5
CodeTSALL 0.855 0.763 0.732 0.741 0.765
CodeT5 N oCode 0822 0728 0.697 0707  0.732
CodeT5 Nopesc 0.821 0.720 0.684 0.689 0.710
CodeTS5NoTitle 0.817 0.724 0.695 0.705 0.730
CodeBERT AL L 0.848 0.756 0.724 0.733 0.757
CodeBERT o code 0.823 0.733 0.702 0.712 0.737
CodeBERT yypesc 0.822 0.723 0.686 0.693 0.714
CodeBERT N, Title 0.808 0.715 0.683 0.693 0.718
Model Name Fl-score@k
F@1 F@2 F@3 F@4 F@5
CodeT5ALL 0.855 0.726 0.633 0.568 0.519
CodeT5 noCode 0.822 0.694 0.603 0.543 0.499
CodeTS5NoDpesc 0.821 0.686 0.591 0.527 0.480
CodeTS5NoTitle 0.817 0.690 0.600 0.541 0.496
CodeBERT AL L 0.848 0.719 0.625 0.561 0.513
CodeBERT v, code 0.823 0.699 0.607 0.545 0.500
CodeBERT vy pesc 0.822 0.688 0.593 0.530 0.483
CodeBERT y,Title 0.808 0.680 0.591 0.531 0.487
Answers to RQ3:

the best performance.

Under PTM4Tag+, Title, and Description are more important than Code for tag
recommendation. Title plays the most important role in predicting the top-1 most
relevant tags, and the contribution of Description increases when the number of
predicted tags increases from two. Still, considering all three components achieve

RQ4. How is the performance of PTM4Tag+ with smaller PTMs?

Results and Analysis The performance of smaller PTMs under the PTM4Tag+ framework
is summarized in Table 8. DistilBERT gives the best performance. The worst-performing
variant of smaller PTMs is CodeT5-small 47, where it achieves scores of 0.824, 0.689,
0.593, 0.529, and 0.482 with respect to F'1-score@1-5. We also observe that these smaller
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Fig. 5 A line chart demonstrate performance difference in F'1-score @k between each ablated models and
CodeT5 47,1, where k € {1,2, 3,4, 5}. The value on the y-axis is calculated using the corresponding score of
the candidate ablated model minus the corresponding score of CodeT5 47 1,

variants all can outperform the previous state-of-the-art method, Post2vVec, by a substantial
margin.

Inference latency refers to the time taken for each model to make predictions. Generally
speaking, inference latency is affected by the computing power of the running machine and
the length of the input sequence. To make a fair comparison, we adopt the same hardware
to query the models. To be specific, we use two Nvidia Tesla v100 16GB GPUs to run the
model. As specified in Section 4, we set the input lengths to be the same as in training, which
is 100 for Title, 512 for Description, and 512 for Code. We randomly sample 2,000 examples
from the test set and calculate the average inference latency taken by the models. To further
reduce the effects of randomness, the experiments are repeated five times. s

Table 9 summarizes the inference time improvement and performance drop of smaller
PTMs compared with CodeT5 under the PTM4Tag+ framework. On average, the inference
latency is reduced by over 47.2% while at least 93.96% of the original performance could be
preserved in terms of average F'1-score @k. In Table 10, we present a detailed statistical sum-
mary of the inference time (measured in milliseconds) for CodeT5 471 and several smaller
variants of PTM4Tag+ , based on a sample size of 10,000 (2,000 x 5). Figure 6 presents the
boxplot on the distribution of inference time. The CodeT5-base model exhibited the highest
average inference time at 37.8 ms. DistilBERT and DistilRoBERTa demonstrated more mod-
erate average inference times of 18.6 ms and 20.0 ms, respectively. The CodeBERT-small and
CodeT5-small models yielded similar results, with mean inference times of 19.5 ms and 19.1
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Table 8 Comparison of variants
of PTM4Tag+ with smaller
pre-trained models and the

best-performing variant of CodeT5 47 1 0855 0708 0586 0492 0420
PTMA4Tag+ ..
DistilBERT A7 0835 0.684 0560 0468 0399
DistilRoBERTa 47 . 0830 0.679 0557 0464 0396
CodeBERT-smallyz;  0.831  0.681 0559 0467  0.398

Model name Precision@k
P@l P@2 P@3 P@4 P@5

CodeT5-small4 1. 0.824  0.672 0.549 0457 0.390
Model Name Recall@k

R@1 R@2 R@3 R@4 R@5
CodeTS5 411, 0855 0763 0.732 0.741 0.765
DistilBERT 47 1, 0.835 0.737  0.701 0.707  0.729

DistilRoBERTa 47 . 0.830 0731 0695 0.701 0.723
CodeBERT-small4;;  0.831 0733 0.699 0705 0.727

CodeT5-small4y 7, 0.824 0.723 0.686 0.691 0.711
Model Name Fl-score@k

F@l F@2 F@3 F@4 F@5
CodeTS5 41, 0855 0726 0.633 0.568 0.519
DistilBERT 47 1. 0.835 0.702 0.605 0.541  0.493

DistilRoBERTa 47 1, 0.830 0.696 0.601 0536  0.489
CodeBERT-small47;  0.831 0.698 0.604 0.540 0.492
CodeT5-small47,7, 0.824  0.689 0.593  0.529  0.482

ms, respectively. From Table 10, we can clearly see that CodeT5 47,1 has the highest inference
time, with a median of 37.9ms and a maximum of 114.7ms. In contrast, the smaller models,
including DistilBERT, DistilRoBERTa, CodeBERT-small, and CodeT5-small, have notably
faster inference times, with medians ranging from 18.5ms to 19.7ms. Among these, CodeT5-
small has the shortest minimum inference time at 16.9ms. The standard deviation values
suggest that the inference times for these models are relatively consistent, with CodeT5-base
having the most variability.

Our results demonstrate that smaller variants of PTM4Tag+ could outperform larger mod-
els like BERTOverflowr1, PLBART 471. Such a phenomenon suggests the performance
of a model does not increase linearly with its size in the SO post-tagging task and it implies
parameter redundancy of large models. Much previous literature showed that smaller PTMs
could also give competent performance and the performance gap to larger PTMs is insignif-
icant (Adoma et al. 2020; Giorgi et al. 2020) and sometimes they are even better when the
training is carefully conducted (Sarfraz et al. 2021). For example, Wang et al. claimed that
CodeT5-small yields better performance than PLBART with a smaller size in tasks like code
summarization and code generation (Wang et al. 2021). For a practical tool, the trade-off
between inference latency and performance should be cautiously determined.

Answers to RQ4: Using smaller PTMs under PTM4Tag+ , the inference latency is
reduced by over 47.2% on average while at least 93.96% of the original performance
could be preserved in terms of average F'1-score @k.
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Table 9 Comparison of smaller PTMs under PTM4Tag+ framework with the best-performing model,
CodeT5 47,1,, including the mean inference time(ms), inference time improvement(%), and F1-Score Per-

formance drop(%)

Model name Inference latency(ms)  F1-Score performance drop
Fl@l Fl@2 Fl@3 Fl@4 Fl@5
DistilBERT 47 1, 18.6(—50.9%) —2.12% —-320% —3.84% —4.46% —4.68%
DistilRoBERTa4 g, 20.0(—47.2%) —1.53% —-236% —32% —357%  —3.90%
CodeBERT-smalls7 7,  19.5(—48.5%) —2.00% —292% —336% —3.74% —4.09%
CodeT5-small 47,7, 19.1(—49.6%) —283% —417% —-512% —5.70% —6.04%
COdCTSALL 37.8 - - - - -
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Fig. 6 A box-plot demonstrate the distribution of inference time of CodeT5,47; and small variants of

PTM4Tag+ among 10,000 samples

Table 10 Statistical summary for

. . . Model name std min 25% 50% 75% max

distribution of inference time

(ms) of CodeT5 47,1, and small CodeT5-base 20 333 367 379 389 1147

variants of PTM4Tag+ among .

10,000 samples DistilBERT 0.8 17.2 18.2 18.5 19.0 53.1
DistilRoBERTa 1.4 18.1 19.4 19.7 20.3 54.7
CodeBERT-small 0.9 17.4 19.0 19.4 19.8 54.0
CodeT5-small 1.1 16.9 18.5 19.1 19.5 53.8
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6 Discussion
6.1 Error Analysis

We conduct an error analysis to illustrate the capability of our proposed framework
PTM4Tag+. Take a Stack Overflow post10 titled Pass Input Function to Multiple Class Dec-
orators in the test dataset as an example. The ground truth tags of the post are decorator,
memoization, python, python-2.7, and python-decorators. The tags pre-
dicted by Post2Vec are class, timer, python-decorators, decorator, and
python while PTM4Tag+ gives the exact prediction as to the ground truth tags. Although
the word memoization has occurred several times in the post, Post2Vec still failed to capture
its existence and the connection between memoization and decorator. Moreover, we found
that the CodeSearchNet database (Husain et al. 2020) which is used to pre-train CodeT5
includes source code files that relate to both memoization and decorator.!* This potentially
could indicate that the pre-trained knowledge learned by CodeT?5 is beneficial for our task.

From the 100,000 posts in the test data, 2,707 posts yield an F'1-score@5 of zero. To
comprehend which tags are less effectively recognized by PTM4Tag+, we count the occur-
rences of ground truth tags associated with posts that received an F1-score@5 of zero.
Table 11 presents the top-10 most often missed tags of this analysis, showing that python
and python-3.x are the tags most frequently missed by PTM4Tag+. We notice that this is
because PTM4Tag+ cannot accurately handle the version of python; it may likely produce
the prediction of python-2.7.

6.2 Manual Evaluation

Furthermore, we conducted a manual evaluation of the predicted tags of PTM4Tag+. We
randomly sample a statistically representative subset of 166 posts in our testing dataset
which gives us a confidence level of 99% with a confidence interval of 10.'> We invite three
software developers with at least 5 years of programming experience to evaluate the relevancy
of the tags predicted by PTM4Tag+. For each post, we present the top-5 tags predicted by
PTM4Tag+. Each of the developers is required to annotate 166 posts individually, thus 166
x 5 = 830 tags in total. Each annotator is required to use domain expertise and is allowed
to refer to external sources when checking the relevance of the predicted tags. Out of the
166 posts, the tags predicted for 76 posts are marked as containing no irrelevant tags by all
three annotators. We then asked the three annotators to discuss their evaluation results. After
the discussion, the three annotators agreed that there were a total of 49 posts containing 62
irrelevant tags.

From our manual analysis, we observed that a significant majority of the predicted tags
are related to the post. However, some inaccuracies were also noted. We found that most of
the irrelevant predictions of PTM4Tag+ are not completely wrong. Instead, these irrelevant
predictions are indirectly related to the topic of the post. We present six examples in Table 11.
For example, for post 52109809, the predicted tags are: bitbucket, git,git-config,
github, ssh. However, the post is solely about git and is not related to bitbucket,

10 https://stackoverflow.com/questions/51910978

n https://github.com/nerdvegas/rez/blob/ 1d3b846d53b5b5404edfe8ddb9083f9ceec8cS5e7/src/rez/utils/
memcached.py#L248-1.375

12 e use the sample size calculator from https://www.surveysystem.com/sscalc.htm
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Table 11 Top-10 tags most often

missed in posts with an Frequency

Fl-score@5 of O Python-3.x 58
Python 45
Javascript 37
c# 29
Java 29
php 22
Angular 22
Android 20
Flutter 18
Web 18
.net 17

although bitbucket and github are related topics. Another noticeable observation is the
simultaneous predictions of tags such python, python-3.x, and python 2.7 always
come together, which also outlines a limitation of our approach.

Further, we found the PTM4Tag+ yielded wrong predictions in certain niche topics. For
example, for post 51903596, PTM4Tag+ gives the prediction of ruby and julia-lang,
while the question is about the crystal programming language (Table 12).

6.3 Revised Experiments for Updated Dataset

To further assess the efficacy of PTM4Tag+, we conduct the evaluation of PTM4Tag+ on an
augmented dataset sourced from the most recent Stack Overflow dump dated June 2023.13
Following the preprocessing procedures we mentioned in Section 4, tags with occurrences
fewer than 50 times were filtered out. This updated dataset comprises 23,687 common tags
and 22,498,254 posts. We use 22,398,254 posts as the training set and the latest 100,000
posts as the test set. We train CodeT5 47,7, on the updated dataset, which is the variant that has
the highest mean F1-score@5 on the previous dataset. The experiment is conducted in the
same setting we mentioned in Section 4. The experimental result is demonstrated in Table 13.
Overall, CodeT5 41, yields an F1-score@5 of 0.516 on the latest data, which is comparable
to 0.519 from the previous dataset.

6.4 Threats to Validity
Threats to Internal Validity

To ensure we implement the baseline (i.e., Post2Vec) correctly, we reused the official replica-
tion package released by the Xu et al.'* To instantiate variants of PTM4Tag+ with different
pre-trained models, we utilized a widely-used deep learning library Hugging Face.'® Similar
to prior studies (Zhou et al. 2019; Wang et al. 2015; Xu et al. 2021), our work assumes that
the tags are labeled correctly by users in Stack Overflow. However, some tags are potentially

13 https://archive.org/details/stackexchange
14 https://github.com/maxxbw54/Post2Vec
15 https://huggingface.co/
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Table 13 Experiment results for

CodeT5 47,7, on the updated Model name gr(;cllslon@l; @2 P@3 Pad P@5
dataset
CodeTS5 411, 0.839 0.703 0.585 0.494 0.424
Model Name Recall@k
R@l R@2 R@3 R@4 R@5
CodeT541 1, 0.839 0.752 0.716 0.722 0.744
Model name Fl-score@k
F@1 F@2 F@3 F@4 F@5

CodeT541 1 0.839 0.719 0.627 0.563 0.516

mislabelled. Still, we believe that Stack Overflow’s effective crowdsourcing process helps to
reduce the number of such cases, and we further minimize this threat by discarding rare tags
and posts (as described in Section 4.2). We conducted a manual analysis to assess the rele-
vancy of the tags of Stack Overflow posts. We computed a statistically representative sample
size using a popular sample size calculator'® with a confidence level of 99% and a confidence
interval of 10. We sampled 166 code snippets to conduct the manual evaluation where three
experienced developers with at least 5 years of programming background were involved in
this manual evaluation. They individually assessed the relevance of the tags, leveraging both
their expertise and external sources. A discussion was then held among the three evaluators if
they identified any conflicts. They all agreed that the tags associated with the sampled posts
were relevant to the content. Another threat to the internal validity is the hyperparameter
setting we used to fine-tune PTM4Tag+. To mitigate this threat, we use hyper-parameters
that were reported in prior studies as recommended or optimal (Devlin et al. 2018; Feng et al.
2020; Wang et al. 2022a).

Users of SO can put any kind of text into the Code blocks of SO posts. The Code component
of PTM4Tag+ may contain other types of content than code snippets, such as stack traces
and error messages. We refer to these content as non-code content. To study the impact
of non-code contents on our framework, we randomly sample a statistically representative
subset of 166 posts from our test dataset, providing us with a 99% confidence level and
a 10% confidence interval. On manual inspection of this subset, we discern that 36 posts,
which is 21.7% of the subset, have content other than typical code snippets within the Code
component. Breaking it down, 22 posts featured error messages, 5 posts detailed database
schema layouts, 5 posts delineated input/output format descriptions, and 4 posts showcased
actual program outputs. The performance of PTM4Tag+ (CodeT5 47 1) in this sampled subset
and the posts containing non-code content are presented in Table 14. Notably, the average F'1-
score @S5 for posts with non-code content surpasses that of the overall subset. This suggests
that PTM4Tag+ has the potential to not only deal with typical code snippets but also with
other forms of content within the Code component.

Threats to External Validity

We analyzed Stack Overflow, the largest SQA site, with a massive amount of questions. These
questions cover diverse discussions on various software topics. As software technologies
evolve fast, our results may not generalize to those newly emerging topics. Instead, our
framework can adapt to new posts by fine-tuning models on more and new questions.

16 https://www.surveysystem.com/sscalc.htm
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Table 14 Comparison of

P@1 P@2 P@3 P@4 P@5
PTM4Tag+ average performance
on a statistically representative Subset 0.867 0.732 0.604 0.503 0.435

subset from the test set versus

PTM4Tag+ average performance Non-code 0.886 0.771 0.629 0.521 0.446
on Non-code Text within the R@1 R@2 R@3 R@4 R@5
same subset Subset 0.867 0.792 0.742 0.735 0.769
Non-code 0.886 0.786 0.705 0.698 0.720

Fe1 F@2 F@3 F@4 F@s

Subset 0.867 0.752 0.647 0.573 0.530

Non-code 0.886 0.776 0.656 0.583 0.535

P represents Precision, R represents Recall, and F represents the F1-
Score

Threats to Construct Validity

Threats to construct validity are related to the suitability of our evaluation metrics.
Precision@k, Recall @k, and F1-score@k are widely used to evaluate many tag rec-
ommendation approaches in software engineering (Zhou et al. 2019; Wang et al. 2015; Xu
etal. 2021). Thus, we believe the threat is minimal. We reuse the evaluation metrics proposed
in our baseline method, Post2Vec (Xu et al. 2021). We conduct the Wilcoxon signed-rank sta-
tistical hypothesis test (Gehan 1965) on the paired data which corresponds to the F1-score @5
of CodeT5 411, and all other PTM models. We conducted the Wilcoxon Signed Rank Test at
a 95% confidence level (i.e., p-value < 0.05). We found that CodeT5 471, significantly out-
performs all other variants with a threshold of p < 0.05. In addition, we conducted Cliff’s
delta (Cliff 1993) to measure the effect size of our results. The Cliff’s Delta statistic, denoted
as ||, is a non-parametric effect size measure that quantifies the amount of difference between
two groups of observations beyond p-values interpretation. We consider |§| that are classified
as “Negligible (N)" for |§| < 0.147, “Small (S)" for 0.147 < |§] < 0.33, “Medium (M)"
for 0.33 < [§] < 0.474, and “Large (L)" for |§] > 0.474, respectively following previous
literature (Cliff 2014). We observe that CodeT5 417, substantially outperforms the baseline
models - Cliff’s deltas are not negligible and are in the range of 0.21 (small) to 0.54 (large).

6.5 Lessons Learned
Lesson #1 Pre-trained language models are effective in tagging SO posts.

The tag recommendation task for SQA sites has been extensively studied in the last decade (Li
et al. 2020; Zhou et al. 2019; Wang et al. 2015; Xu et al. 2021). Researchers have tackled the
problem via a range of techniques, e.g., collaborative filtering (Li et al. 2020) and deep learn-
ing (Xu et al. 2021). Furthermore, these techniques usually involve separate training for each
component. Our experiment results have demonstrated that simply fine-tuning the pre-trained
Transformer-based model can achieve state-of-the-art performance, even if there are thou-
sands of tags. CodeBERT, BERT, and RoBERTa are capable of providing promising results
for tag recommendation. Even though BERT and RoBERTa did not leverage programming
language at the pre-training stage.

We encourage practitioners to leverage pre-trained models in the multi-label classification
settings where the size of the label set could go beyond thousands. Although PTMs are already
widely adopted in SE tasks, most tasks are formulated as either binary classification problems
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or multi-class classification problems. In binary or multi-class classification problems the
label classes are mutually exclusive, whereas for multi-label classification problems, each
data point may belong to several labels simultaneously. Moreover, our experiments also
validate the generalizability of pre-trained models. We recommend practitioners apply pre-
trained models in more SE tasks and consider fine-tuning pre-trained models as one of their
baselines.

Lesson #2

Encoder-decoder models should also be considered in SO-related tasks for classification
tasks. By convention, BERT-based models are widely used for classification tasks in gen-
erating sentence embeddings. Our results have shown that encoder-decoder models are also
capable of generating meaningful embeddings (especially CodeT5 gives the best perfor-
mance) in the tag recommendation task of SO posts. We advocate researchers also involve
the encoder-decoder models as baseline methods for SO-related classification tasks in the
future.

Lesson #3

All components of a post from Stack Overflow are valuable pieces of semantics. Most
previous literature has removed the code snippets from the pre-training process because
they are considered noisy, poorly structured, and written in many different programming
languages (Zhou et al. 2019; Li et al. 2020; Wang et al. 2015; Zhou et al. 2017). However,
our results show that code snippets are also beneficial to capturing the semantics of SO
posts and further boosting the performance of the tag recommendation task. We encourage
researchers to consider both the natural and programming language parts of a post when
analyzing SQA sites.

Lesson #4

Smaller pre-trained models are practical substitutes. We demonstrate that various small
PTMs could achieve similar performance to larger PTMs while increasing the inference
latency. Smaller variants of PTM4Tag+ even outperformed variants with BERTOverflow
and PLBART. We show that smaller PTMs are also effective in the considered task, and
developers should consider these PTMs to reach a balance point between the performance
and usability in the real world for SO-related tasks.

7 Related Work
7.1 Pre-trained Models

Transformer-based pre-trained models have recently benefited a broad range of both under-
standing and generation tasks. Recent works (Lee et al. 2019; Beltagy et al. 2019; Huang
et al. 2020) have shown that the in-domain knowledge acquired by PTMs is valuable in
improving the performance on domain-specific tasks, such as ClinicalBERT (Huang et al.
2020) for clinical text, SciBERT (Beltagy et al. 2019) for scientific text, and BioBERT (Lee
etal. 2019) for biomedical text. Evoked by the success of PTMs in other domains, researchers
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have started to work on the SE domain-specific PTMs (Feng et al. 2020; Shi et al. 2024; Zhou
etal. 2023a; Tabassum et al. 2020). Developers are free to create and pick arbitrary identifiers.
These identifiers introduce a lot of customized words into the texts within the SE field (Shi
et al. 2022). This suggests that models pre-trained on general texts, such as BERT (Devlin
et al. 2018), may not be optimal for representing texts in the software engineering domain.

Specifically, the transformer model is designed with an encoder-decoder architecture. The
encoder takes an input sentence and derives important features from it, while the decoder
leverages these features to generate an output sentence. In terms of architecture, we categorize
the transformer-based pre-trained models into three types, which are encoder-only models,
decoder-only models, and encoder-decoder models

Encoder-only models are widely generating sentence representations in language under-
standing tasks (Lan et al. 2020a). Buratti et al. trained C-BERT (Buratti et al. 2020) using code
from the top-100 starred GitHub C language repositories. Experimental results show that C-
BERT achieves high accuracy in the Abstract Syntax Tree (AST) tagging task and produces
comparatively good performance to graph-based approaches on the software vulnerability
identification task. Von der Mosel et al. (2022) aims to provide a better SE domain-specific
pre-trained model than BERTOverflow (Tabassum et al. 2020) and propose seBERT (Von der
Mosel et al. 2022). He et al. pre-trained SOBERT (He et al. 2024) based on the corpus of
Stack Overflow posts. CCBERT (Zhou et al. 2023b) learns a generic representation of code
changes. It perceives fine-grained code changes at the token level. Guo et al. presented Graph-
CodeBERT (Guo et al. 2021), the first pre-trained models that consider the inherent structure
of programming languages. In addition to NL and PL data, GraphCodeBERT also involves
data flow information. In the pre-training stage, Guo et al. utilize masked language modeling
and two new structure-aware tasks as pre-training objectives. TreeBERT is a tree-based pre-
trained model for improving code-related generation tasks, proposed by Jiang et al. (2021).
TreeBERT leverages the abstract syntax tree (shortened as AST) corresponding to the code
into consideration. The model is pre-trained by the tree-masked language modeling (TMLM)
task and node order prediction (NOP) task. As a result, TreeBERT achieved state-of-the-art
performance in code summarization and code documentation tasks.

Decoder-only pre-trained models only inherit the decoder part of the transformer archi-
tecture. Decoder-only models are usually used for generation tasks (Wang et al. 2022b).
Svyatkovskiy et al. trained GPT-C (Svyatkovskiy et al. 2020), a generative model based on
GPT-2 architecture, and leveraged GPT-C to build a code completion tool.

Encoder-decoder pre-trained models use complete Transformer architecture. PLBART
(Ahmad et al. 2021) has undergone pre-training on a massive set of Java and Python func-
tions and corresponding natural language text through the denoising autoencoding process.
Results showed that PLBART is promising in code summarization, code generation, and code
translation tasks. Wang et al. introduced CodeT5 (Wang et al. 2021), a pre-trained encoder-
decoder Transformer model that effectively utilizes the semantic information conveyed
through developer-assigned identifiers. Extensive experiments demonstrate that CodeT5 sig-
nificantly outperforms previous methods in tasks such as code defect detection and clone
detection, as well as generation tasks including PL-NL, NL-PL, and PL-PL translations.
CoTexT also adopted the T5 architecture (Phan et al. 2021). CoTexT is another bi-model
PTM and is capable of supporting a range of natural language-to-programming language
tasks, including code summarization and documentation, code generation, defect detection,
and debugging.
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7.2 Tag Recommendation for SQA Sites

Researchers have extensively studied the tag recommendation task in the SE domain and
proposed a number of approaches. Wang et al. (2015) proposed TagCombine, a tag recom-
mendation framework that consists of three components: a multi-label ranking component,
a similarity-based ranking component, and a tag-term-based ranking component. Eventu-
ally, TagCombine leverages a sample-based method to combine the scores from the three
components linearly as the final score. Wang et al. introduced EnTagRec (Wang et al. 2014)
that utilizes Bayesian inference and an enhanced frequentist inference technique. Results
show that it outperformed TagCombine by a significant margin. Wang et al. then further
extend EnTagRec (Wang et al. 2014) to EnTagRec++ (Wang et al. 2018), the latter of which
additionally considers user information and an initial set of tags provided by a user. Zhou
et al. proposed TagMulRec (Zhou et al. 2017), a collaborative filtering method that suggests
new tags for a post based on the results of semantically similar posts. Li et al. proposed
TagDC (Li et al. 2020), which is implemented with two parts: TagDC-DL which leverages
a content-based approach to learn a multi-label classifier with a CNN Capsule network, and
TagDC-CF which utilizes collaborative filtering to focus on the tags of similar historical
posts. Post2Vec (Xu et al. 2021) distributively represents SO posts and is shown to be useful
in tackling numerous Stack Overflow-related downstream tasks.

8 Conclusion and Future Work

In this work, we introduce PTM4Tag+, a pre-trained model-based framework for tag rec-
ommendation of Stack Overflow posts. We implement eight variants of PTM4Tag+ with
different PTMs. Our experiment results show that the CodeT5 gives the best performance
under the framework of PTM4Tag+, and it outperforms the state-of-the-art approach by a
large margin in terms of F1-score@5. However, PTM4Tag+ variants implemented with
BERTOverflow and ALBERT do not give promising results. Even though PTMs are shown
to be powerful and effective, PTMs behave differently, and the selection of PTMs needs to
be carefully decided.

In the future, we are interested in applying PTM4Tag+ on more SQA sites such as
AskUbuntu,!” etc., to evaluate its effectiveness and generalizability further. It is notewor-
thy that beyond actual code snippets, SO posts often incorporate other textual artifacts like
stack traces and error messages. We plan to expand our approach to more fine-grained types
of text for future research.
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