
AutoDebloater: Automated Android App Debloating
Jiakun Liu∗, Xing Hu†, Ferdian Thung∗, Shahar Maoz‡, Eran Toch§, Debin Gao∗, and David Lo∗

∗School of Computing and Information Systems, Singapore Management University, Singapore
†School of Software Technology, Zhejiang University, China
‡School of Computer Science, Tel Aviv University, Israel

§Department of Industrial Engineering, Tel Aviv University, Israel
{jkliu, ferdianthung, dbgao, davidlo}@smu.edu.sg, xinghu@zju.edu.cn, maoz@cs.tau.ac.il, erant@tauex.tau.ac.il

Abstract—Android applications are getting bigger with an
increasing number of features. However, not all the features
are needed by a specific user. The unnecessary features can
increase the attack surface and cost additional resources (e.g.,
storage and memory). Therefore, it is important to remove
unnecessary features from Android applications. However, it
is difficult for the end users to fully explore the apps to
identify the unnecessary features, and there is no off-the-shelf
tool available to assist users to debloat the apps by themselves.
In this work, we propose AutoDebloater to debloat Android
applications automatically for end users. AutoDebloater is a web
application that can be accessed by end-users through a web
browser. In particular, AutoDebloater can automatically explore
an app and identify the transitions between activities. Then,
AutoDebloater will present the Activity Transition Graph to
users and ask them to select the activities they do not want to
keep. Finally, AutoDebloater will remove the activities that are
selected by users from the app. We conducted a user study on five
Android apps downloaded from three categories (i.e., Finance,
Tools, and Navigation) in Google Play and F-Droid. The results
show that users are satisfied with AutoDebloater in terms of the
stability of the debloated apps and the ability of AutoDebloater
to identify features that are never noticed before. The tool is
available at http://autodebloater.club. The code is available at
https://github.com/jiakun-liu/autodebloater/ and the demonstra-
tion video can be found at https://youtu.be/Gmz0-p2n9D4.

Index Terms—Android, Software Debloating

I. INTRODUCTION

Nowadays, Android phones are becoming increasingly pop-
ular [1]. A large number of Android applications (i.e., apps)
are shared in the app stores [2]. To meet the diverse needs of
different users, Android apps often integrate a series of differ-
ent functions into one, becoming a super app. For example,
the Instagram app not only allows users to share and browse
photos and videos but also provide “reels” in a dedicated
tab.1 The existence of these functions is driven by the app
providers’ desire to increase service sales and attract a larger
user base. However, in many apps, many of these functions
are not needed by the users, resulting in a bloated app [3].
Prior studies showed that 80% of features in average software
products are rarely or never used [3]. This practice disregards
the users’ experience. Additionally, a large amount of code
unrelated to the users runs on Android phones, resulting in
wasted resources (such as battery power and memory usage)
and potentially introducing potential risks [4]. Therefore, the
bloated features in Android apps have become a problem.

1https://play.google.com/store/apps/details?id=com.instagram.android

Figure 1 shows an example of the Activity Transition Graph
(ATG). ATG demonstrates which activity can be accessed from
another. An activity is an application component that provides
a screen with which users can interact to do something.2,3 The
graph in Figure 1 specifies 19 out of the total 35 activities
in the Wikipedia app. For example, users can use Wikipedia
to read articles, search for information, edit articles, read the
saved articles, as well as create accounts, log in, log out,
and reset passwords. However, users may not need all these
features. For example, a user may just want to read articles
and not want to log in or reset passwords to edit articles. For
such users, the features related to account management and
editing are redundant.

Prior studies proposed several solutions to debloat Android
apps. For example, Jiang et al. considered the dead code
as bloated code and identified the dead code in Android
apps statically [5]. Pilgun considered the code that will never
be executed as bloated code. He identified bloated code by
collecting code coverage information through automated app
exploration (i.e., a fuzzer). [6]. Then, He removed the bloated
Smali code from the app and recompiled the app. Tang et al.
identified features from different perspectives (e.g., permis-
sion, activity, and modularity) statically, and ask developers
to select the features they want to keep [7].

However, these solutions failed to identify the features that
are undesired by users. For users, debloating an app presents
a challenge due to several reasons. Firstly, fully exploring
an app and identifying unnecessary features can be difficult.
Users may not be aware of the existence of certain features
or functionalities that are unnecessary for their specific needs,
i.e., they are unaware of the bloated features in the app. If
so, they cannot request the removal of these features. For
example, Figure 1 shows that there are 35 activities in the
Wikipedia app, and the ATG is very complex. If users do not
conduct a thorough exploration, they will not discover these
bloated activities in the app. However, expecting users to fully
explore an app is highly challenging [8]. Besides, there is no
off-the-shelf tool available to assist them in debloating the
app. Existing solutions require setting up a complete Android
software development environment [7]. This is impractical for
end-users of Android phones because not all users with app

2https://developer.android.com/guide/components/activities/intro-activities
3https://developer.android.com/reference/android/app/Activity

http://autodebloater.club
https://github.com/jiakun-liu/autodebloater/
https://youtu.be/Gmz0-p2n9D4


NotificationActivity

PageActivity

SettingsActivity

NotificationSettingsActivity

DeveloperSettingsActivity

RandomActivity

DescriptionEditHelpActivity

PaintActivity

DescriptionEditSuccessActivity ExpiryInfoActivity CrashReportActivity WikipediaLanguagesActivity

LoginActivity

DescriptionEditTutorialActivityLangLinksActivity

MainActivity

DescriptionEditActivity GalleryActivityTabActivityEditSectionActivity

ThemeFittingRoomActivity MostReadArticlesActivity

ResetPasswordActivity CreateAccountActivity

InitialOnboardingActivity

UpdateActivity

ConfigureActivity AboutActivity

NewsActivity OnThisDayActivity ReadingListActivity LicenseActivity LanguagesListActivityFeedbackActivity

Fig. 1. An example of a part of the Activity Transition Graph of the Wikipedia app. This example shows that there is a large number of features in an app,
and it can be difficult for a user to fully explore the app.

debloating needs are software developers. Therefore, a tool is
needed to help end-users debloat Android apps.

To fill the gap, we propose AutoDebloater, a tool that
can automatically debloat Android apps. AutoDebloater is a
web application that can be accessed by end-users through a
web browser. In particular, AutoDebloater can automatically
explore an app and identify the transitions between activities
using StoryDistiller [8], [9]. StoryDistiller is a state-of-the-art
tool that can automatically explore Android apps and generate
the ATG. Then, AutoDebloater will present the ATG to users
and ask them to select the activities they want to keep. Finally,
AutoDebloater will remove the activities that are not selected
by users from the app.

To evaluate the performance of AutoDebloater, we con-
ducted a user study on five Android apps downloaded from
three categories (i.e., Finance, Tools, and Navigation) in
Google Play and F-Droid. We asked seven users to use
AutoDebloater to debloat the apps. Results show that users are
satisfied with the stability of the debloated apps generated by
AutoDebloater as well as the ability of AutoDebloater to help
them identify the activities that they never noticed before. We
also collect the time to debloat the apps using AutoDebloater.
The results show that AutoDebloater can debloat apps in 20
seconds on average.

II. AUTODEBLOATER

In this section, we first present the design of the website of
AutoDebloater by providing a usage scenario. Then we intro-
duce the background technique of AutoDebloater, including
how we use StoryDistiller to extract the ATG, and how we
remove the activities from the app.

A. Usage Scenario

Consider a user Alice, who just wants to browse the
knowledge shared on Wikipedia, and does not want to edit the
articles. She wants to remove the features related to editing
articles from the Wikipedia app. Alice can use our tools to
debloat the Wikipedia app. First, Alice needs to upload the
Wikipedia APK to our server. Our server will analyze the
APK using StoryDistiller to (1) identify all activities in the
app, (2) take a screenshot of each activity, and (3) generate
the ATG. After finishing the analysis, our server will send back
the ATG as well as the list of all activities of the app to Alice.

SMU Classification: Restricted

Upload	an	apk View	the	Activity	Transition	Graph	
and	select	the	“Don’t”	want	activities Download	the	debloated	app

Fig. 2. An example of the use of AutoDebloater.

If the same APK has been uploaded before, our server will
directly return the ATG to Alice without re-analyzing the APK,
which can reduce the response time. Then, Alice can select the
activities that she wants to keep. Our server will remove the
activities that Alice does not want to keep from the app. After
that, our server will recompile the app and send the debloated
APK to Alice. Finally, Alice can install the debloated APK
with all the features that Alice wants.

B. Extracting ATG using StoryDistiller

StoryDistiller is a state-of-the-art tool that can automatically
explore Android apps and generate the ATG [8], [9]. Given
an app to analyze, StoryDistiller outputs the (1) ATG of the
app, together with (2) the screenshots of each activity in the
app. The details of StoryDistiller can be found in the original
papers [8], [9]. Still, to make our paper self-contained, we
briefly introduce the working principle of StoryDistiller in this
section.

To explore the transition from one activity to another, Story-
Distiller needs to launch the app activities externally (outside
the app, i.e., from the command line). Whether an activity
can be launched externally is set by android : exported
in the AndroidManifest.xml file. However, the default
value of android : exported is false, indicating that the
activity cannot be launched by components of other apps.
To solve this problem, StoryDistiller instruments the app and
modifies the AndroidManifest.xml file of the app by setting
android : exported to true for all activities. By doing so,



StoryDistiller can launch the activities externally and take
screenshots of each activity in the app.

Following that, StoryDistiller performs static program anal-
ysis to generate the static ATG. More specifically, StoryDis-
tiller takes as input an app, then generates its call graph
(CG). Then, StoryDistiller traverses each method of each class
to obtain the explicit activity transition. More specifically,
StoryDistiller first analyzes the intent constructor created in
the method body and then tracks the parameter that indicates
the target activity by data-flow analysis. If the method is in
a Fragment (i.e., a reusable portion hosted in an activity)4,
StoryDistiller also identifies the activities corresponding to the
fragment and merges fragment relations to construct the actual
activity transitions.

During the static extraction process, StoryDistiller also
extracts the Inter-Component Communication (ICC) data to
collect information (i.e., primitive attributes and extra param-
eters) to launch the activities externally. More specifically,
StoryDistiller parses the manifest file or the Java code to
extract the primitive attributes such as action and category.
Then, to extract extra parameters, StoryDistiller identifies
the methods related to the activity life cycle and analyzes
these methods successively based on the relation between the
additional parameters in these methods and activity rendering.

Finally, StoryDistiller launches activities dynamically using
the extracted ICC data with the help of the Android Debug
Bridge (ADB) and the Android Emulator. Then, StoryDis-
tiller explores all interactive components of each activity to
identify the dynamic activity transitions. The dynamic activity
transitions are merged with the static activity transitions to
generate the final ATG. During this process, StoryDistiller
also takes screenshots of each activity in the app. As a result,
StoryDistiller can generate the ATG of the app, together with
the screenshots of each activity in the app.

Note that the execution of StoryDistiller is time-consuming.
To help users save time, we cache the ATG of each app that
has been uploaded to our server. More specifically, if there is
a new app to analyze, we first check whether the ATG of this
app has been cached. If so, we directly return the ATG to the
user. Otherwise, we analyze the app using StoryDistiller and
cache the ATG of this app for future use.

C. Debloating Android Application

After collecting the activities that the user does not want
to keep, we need to remove these activities from the app.
To do so, we first identify the methods in the classes of
the activities that the user wants to remove (i.e., to-remove
classes). Then we identify other related methods in the CG
that are only affected by these methods using forward slicing.
More specifically, we first annotate the methods that are in
the to-remove classes as the initial set of to-remove methods.
We copy the to-remove methods to a worklist. We first pop
a method from the worklist and identify the successors of
this method in the CG. Then, for each successor, if it is
only called by the methods in the to-remove methods, we

4https://developer.android.com/guide/fragments

add the successor to the to-remove methods and the worklist.
The algorithm terminates when the worklist becomes empty,
indicating that all relevant nodes have been processed.

We employ the Soot framework [10] to eliminate the
to-remove methods from the Android application. Each to-
remove method undergoes a process where its body is cleared,
and the return value is modified to either null (for reference
types in Java) or 0 (for numeric types in Java). By doing so,
these to-remove methods are effectively excluded from being
called, while still maintaining their presence to ensure program
compilation.

We have developed a Java library that incorporates the
method-removal module. This library takes as input the orig-
inal application, its corresponding call graph (CG), and the
activities to be removed. It then generates a debloated version
of the application as its output.

III. EVALUATION

To demonstrate the usefulness of AutoDebloater, we con-
duct a user study. Our goal is to check whether AutoDebloater
can help explore the functionalities of apps effectively, and can
help users remove the activities that they are unlikely to use.

We randomly select five apps (i.e., Bitcoin Wallet5, Amaze
File Manager6, Gas Prices7, Vespucci8, and A2DP Volume9)
with different numbers of activities (3-19 activities) from three
categories (i.e., finance, tool and navigation), which are hosted
on Google Play Store and F-Droid.

We invite seven users to assess the performance of AutoDe-
bloater. All of the recruited participants have used Android
devices for more than one year and are not Android-related
developers or researchers. We first explain the concept of
debloating to them, to ensure that they understand the goal
of their task. Then, we ask them to explore the functionalities
of the selected apps and visit our website to browse the ATG of
these selected apps. Note that the selected apps are uploaded to
the website in advance. Therefore, according to Section II-B,
our website has the cache of the ATG and the users can directly
obtain the ATG of the apps without waiting for the analysis
of the apps. If they find that there are some activities that
they will never use, we ask them to remove these activities
using AutoDebloater. Finally, we ask each user to assign a
score from 1 to 5 to each debloated app in terms of stability
(i.e., the ability of AutoDebloater to create a debloated app
that runs without crashing) and overall satisfaction (i.e., the
ability of AutoDebloater to help them identify activities that
they are unlikely to use and to remove them). 1 indicates that
the user is not satisfied at all, and 5 indicates that the user is
very satisfied.

Our user study result uncovers that, the average score of
stability is 4.8, and the average score of overall satisfaction is
3.97. This indicates that users are satisfied with the AutoDe-
bloater as well as the debloated apps. Some users complain

5https://play.google.com/store/apps/details?id=de.schildbach.wallet
6https://play.google.com/store/apps/details?id=com.amaze.filemanager
7https://f-droid.org/en/packages/org.woheller69.spritpreise/
8https://f-droid.org/en/packages/de.blau.android/
9https://play.google.com/store/apps/details?id=a2dp.Vol



Time
0

5

10

15

20

25

30

35

40
S

ec
on

d
s

Fig. 3. The distribution of the time to debloating. This figure shows that the
time to debloating in AutoDebloater is acceptable.

that activities can still not be fully rendered in ATG, which is
already reported in Chen et al.’s work [9]. Our website also
records the time to debloat. Figure 3 shows the plot of the time
to debloat. The dot in the plot indicates the median time to
debloat the app, and the horizontal line indicates the average
time to debloat. On average, the time to debloat is less than
20 seconds, which we believe to be acceptable.

IV. RELATED WORK

Google has provided a series of off-the-shelf tools to debloat
Android apps. However, the goal of these tools is to reduce
the size of Android apps rather than remove the activities that
users will never use. For example, R8 is used to statically
detect and remove dead code (e.g., unused classes, fields,
methods) and unused resources from an app.10,11 Google Play
also provides the App Bundle mechanism that only the code
and resources of a specific device could be downloaded [11].

Researchers also proposed approaches to reduce the size of
Android apps. For example, Jiang et al. identified and removed
the redundant bytecode from the app statically [12]. Following
that, Jiang et al. also employed static analysis to detect and
remove dead code [5]. Pilgun et al. considered the code that
is not executed during tests as bloated code and removed the
bloated code from Smali code [6]. Xie et al. debloated apps
to minimize the bandwidth of mobile networks [13].

The most related work to our paper is the work of Tang
et al. [7]. Different from these works, Tang et al. considered
the features (i.e., activity, permission, and modularity) in the
apps that can be bloated and asked developers to annotate
the bloated features [7]. They also removed unused resources,
images, and ABI from the app. However, when we submit
our paper, the code of their work is not available.12 Besides,
different from Tang et al.’s work, our paper implements an
off-the-shelf tool to debloat Android apps in the form of a
website. Our tool can help users explore the functionalities of

10https://r8.googlesource.com/r8
11https://android-developers.googleblog.com/2018/11/r8-new-code-

shrinker-from-google-is.html
12https://web.archive.org/web/20230525171119/https://sites.google.com/vie-

w/xdebloat We cannot download the code of their work.

apps and remove the activities that they will never use without
the help of developers.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a website, AutoDebloater, to
debloat Android apps. AutoDebloater can help users explore
the functionalities of apps with the help of StoryDistiller
and can help users remove the activities that they will never
use. Our user study results show that users are satisfied with
AutoDebloater in terms of the stability of the debloated apps
and the ability of AutoDebloater to identify features that are
never noticed before. In the future, we plan to allow users to
label the features that they do not want in a finer granularity
(e.g., the granularity of a button or a text field).

ACKNOWLEDGEMENTS

This research / project is supported by the National Research
Foundation, Singapore, and Cyber Security Agency of Singa-
pore under its National Cybersecurity Research and Devel-
opment Programme, NCRP25-P03-NCR-TAU. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore and Cyber
Security Agency of Singapore.

REFERENCES

[1] “Android,” Mar. 2023. [Online]. Available: https://frida.re/docs/android/
[2] “Android Mobile App Developer Tools.” [Online]. Available: https:

//developer.android.com/
[3] A. Aijaz and C. Jang, “The 80% Rule of Software

Development,” Feb. 2020. [Online]. Available: https://www.split.io/
blog/the-80-rule-of-software-development/

[4] S. Bhattacharya, K. Gopinath, and M. G. Nanda, “Combining concern
input with program analysis for bloat detection,” ACM SIGPLAN No-
tices, vol. 48, no. 10, pp. 745–764, Nov. 2013.

[5] Y. Jiang, Q. Bao, S. Wang, X. Liu, and D. Wu, “RedDroid: Android
Application Redundancy Customization Based on Static Analysis,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE), Oct. 2018, pp. 189–199.

[6] A. Pilgun, “Don’t Trust Me, Test Me: 100% Code Coverage for a 3rd-
party Android App,” in 2020 27th Asia-Pacific Software Engineering
Conference (APSEC). Singapore, Singapore: IEEE, Dec. 2020, pp.
375–384.

[7] Y. Tang, H. Zhou, X. Luo, T. Chen, H. Wang, Z. Xu, and Y. Cai,
“XDebloat: Towards Automated Feature-Oriented App Debloating,”
IEEE Transactions on Software Engineering, vol. 48, no. 11, pp. 4501–
4520, Nov. 2022.

[8] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
ryDroid: Automated Generation of Storyboard for Android Apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). Montreal, QC, Canada: IEEE, May 2019, pp. 596–607.

[9] S. Chen, L. Fan, C. Chen, and Y. Liu, “Automatically Distilling
Storyboard With Rich Features for Android Apps,” IEEE Transactions
on Software Engineering, vol. 49, no. 2, pp. 667–683, Feb. 2023.

[10] “BodyTransformer (Soot API).” [Online]. Available: https://www.sable.
mcgill.ca/soot/doc/soot/BodyTransformer.html

[11] “About Android App Bundles.” [Online]. Available: https://developer.
android.com/guide/app-bundle

[12] Y. Jiang, D. Wu, and P. Liu, “JRed: Program Customization and
Bloatware Mitigation Based on Static Analysis,” in 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC).
Atlanta, GA, USA: IEEE, Jun. 2016, pp. 12–21.

[13] Q. Xie, Q. Gong, X. He, Y. Chen, X. Wang, H. Zheng, and B. Y. Zhao,
“Trimming Mobile Applications for Bandwidth-Challenged Networks in
Developing Regions,” IEEE Transactions on Mobile Computing, vol. 22,
no. 1, pp. 556–573, Jan. 2023.

https://frida.re/docs/android/
https://developer.android.com/
https://developer.android.com/
https://www.split.io/blog/the-80-rule-of-software-development/
https://www.split.io/blog/the-80-rule-of-software-development/
https://www.sable.mcgill.ca/soot/doc/soot/BodyTransformer.html
https://www.sable.mcgill.ca/soot/doc/soot/BodyTransformer.html
https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle

	Introduction
	AutoDebloater
	Usage Scenario
	Extracting ATG using StoryDistiller
	Debloating Android Application

	Evaluation
	Related Work
	Conclusion and Future Work
	References

